当前位置: X-MOL 学术Appl. Nanosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significant enhancement of corrosion resistance of stainless steel with nanostructured carbon coatings by substrate-catalytic CVD
Applied Nanoscience Pub Date : 2020-11-17 , DOI: 10.1007/s13204-020-01621-6
Shengcheng Shu , Dan Dai , Chih-Yeh Chung , Qilong Yuan , Bo Wang , Tien-Tsai Hung , Wen Dai , Qiuping Wei , Li Fu , Jinhong Yu , Nan Jiang , He Li , Cheng-Te Lin , Shi-Kun Chen , Tsung-Shune Chin

The bipolar plate is the major component of proton-exchange membrane fuel cells and also a critical contributor to the fuel cell performance. Metallic bipolar plate (MBP) has high impact resistance but its poor chemical stability limits the service lifetime and stack stability. One of the feasible methods to enhance the corrosion resistance of MBPs is the formation of conductive protective coatings on the MBP surface. In this work, nanostructured carbon coatings were deposited on stainless steel by chemical vapor deposition using the substrate itself as catalysts. Under the optimized conditions, the corrosion potential of carbon coatings with dense spherical structure on stainless steel (2.1 VRHE) is much higher than that of uncoated one (1.2 VRHE), and even greater than that of commercial graphite bipolar plates (1.7 VRHE), showing 75% and 23.5% improvement in corrosion resistance, respectively. Moreover, the corrosion current density of stainless steel with dense sphere-assembled coatings decreases to 0.2 mA/cm2, which is two orders of magnitude lower than that of graphite bipolar plates (27.4 mA/cm2) at the same applied potential (2.2 VRHE). The coated stainless steel with excellent anticorrosion properties has potential applications for MBPs in proton-exchange membrane fuel cells, electrochemical treatment of waste water, and current collectors in lithium-ion batteries.



中文翻译:

底物催化CVD显着提高具有纳米结构碳涂层的不锈钢的耐腐蚀性

双极板是质子交换膜燃料电池的主要组成部分,也是燃料电池性能的关键贡献者。金属双极板(MBP)具有较高的抗冲击性,但其化学稳定性差会限制使用寿命和堆叠稳定性。增强MBP耐腐蚀性的可行方法之一是在MBP表面形成导电保护涂层。在这项工作中,使用基底本身作为催化剂,通过化学气相沉积将纳米结构的碳涂层沉积在不锈钢上。在最佳条件下,具有致密球形结构的碳涂层在不锈钢(2.1 V RHE)上的腐蚀潜力远高于未涂层的碳涂层(1.2 V RHE)),甚至比市售的石墨双极板(1.7 V RHE)还要大,其耐腐蚀性分别提高了75%和23.5%。此外,在相同的施加电势(2.2)下,具有致密球体涂层的不锈钢的腐蚀电流密度降低至0.2 mA / cm 2,比石墨双极板(27.4 mA / cm 2)的腐蚀电流密度低两个数量级。V RHE)。具有优异防腐性能的涂层不锈钢在质子交换膜燃料电池中的MBP,废水的电化学处理以及锂离子电池的集电器中具有潜在的应用前景。

更新日期:2020-11-17
down
wechat
bug