当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to Heroes or Villains? How Nontraditional Luminescent Materials Do and Do Not Enhance Bioanalysis and Imaging
Chemistry of Materials ( IF 7.2 ) Pub Date : 2020-11-15 , DOI: 10.1021/acs.chemmater.0c04202
W. Russ Algar

Regrettably, the graph of relative brightness in Figure 6A was published with a labeling error. The originally published graph has a horizontal axis that logarithmically spans nine decades but is labeled from 102 to 109 M–1 cm–1. The correct labeling is from 102 to 1011 M–1 cm–1. A corrected Figure 6 is shown on the next page. Figure 6. Blueprint for the design of molecular and cellular assay platforms that utilize NTLMs and smartphone-based devices. (A) Diagram of luminescent materials and their size scale. Fluorescein and R-phycoerythrin (R-PE) are commonly used and bright fluorophores with blue excitation. QDs, Pdots, and MNP@QD are bright under both violet and blue excitation. The approximate brightness of each material is plotted (far right). The ranges of brightness shown for QDs and MNP@QD reflect variation in QD emission color with size and composition. The range of brightness shown for Pdots is for ca. 60–70 nm particles and reflects both uncertainty in the measurement and two different conjugated polymers (F8BT, CNPPV). To a first approximation, Pdot brightness scales with the nanoparticle volume. (B) Simple diagrams of smartphone camera-based devices for fluorescence imaging, including an all-in-one device that uses blue light from the camera flash for excitation (left) and a device that powers a violet laser diode via the smartphone battery and provides a magnified image (right). (C) Calibration data from a model lateral flow immunochromatographic assay showing the much greater sensitivity and lower detection limit from Pdots versus QDs, imaged via the all-in-one device. Data reproduced from ref 146. Copyright 2019 American Chemical Society. (D) Representative images of cells immunomagnetically isolated using MNP@QD (left) and a plot (right) showing that the counts of HER2-positive SK-BR3 breast cancer cells were constant even with an increasing background of HER2-negative MDA-MB-231 breast cancer cells. Data reproduced from ref 150. Copyright 2019 American Chemical Society. This article has not yet been cited by other publications. Figure 6. Blueprint for the design of molecular and cellular assay platforms that utilize NTLMs and smartphone-based devices. (A) Diagram of luminescent materials and their size scale. Fluorescein and R-phycoerythrin (R-PE) are commonly used and bright fluorophores with blue excitation. QDs, Pdots, and MNP@QD are bright under both violet and blue excitation. The approximate brightness of each material is plotted (far right). The ranges of brightness shown for QDs and MNP@QD reflect variation in QD emission color with size and composition. The range of brightness shown for Pdots is for ca. 60–70 nm particles and reflects both uncertainty in the measurement and two different conjugated polymers (F8BT, CNPPV). To a first approximation, Pdot brightness scales with the nanoparticle volume. (B) Simple diagrams of smartphone camera-based devices for fluorescence imaging, including an all-in-one device that uses blue light from the camera flash for excitation (left) and a device that powers a violet laser diode via the smartphone battery and provides a magnified image (right). (C) Calibration data from a model lateral flow immunochromatographic assay showing the much greater sensitivity and lower detection limit from Pdots versus QDs, imaged via the all-in-one device. Data reproduced from ref 146. Copyright 2019 American Chemical Society. (D) Representative images of cells immunomagnetically isolated using MNP@QD (left) and a plot (right) showing that the counts of HER2-positive SK-BR3 breast cancer cells were constant even with an increasing background of HER2-negative MDA-MB-231 breast cancer cells. Data reproduced from ref 150. Copyright 2019 American Chemical Society.

中文翻译:

纠正英雄还是反派?非传统发光材料如何增强生物分析和成像

遗憾的是,图6A中的相对亮度图表已发布,但带有标签错误。最初发布的图形的水平轴对数跨度为九个十年,但标记为10 2到10 9 M –1 cm –1。正确的标签是10 2到10 11 M –1 cm –1。下页显示了更正的图6。图6.利用NTLM和基于智能手机的设备的分子和细胞测定平台设计蓝图。(A)发光材料及其尺寸比例图。荧光素和R-藻红蛋白(R-PE)是常用的,具有蓝色激发的明亮的荧光团。在紫色和蓝色激发下,QD,Pdot和MNP @ QD都是明亮的。绘制了每种材料的近似亮度(最右边)。QD和MNP @ QD显示的亮度范围反映了QD发射颜色随尺寸和成分的变化。Pdots显示的亮度范围大约为。60-70 nm的颗粒,反映了测量中的不确定性以及两种不同的共轭聚合物(F8BT,CNPPV)。初步估算,Pdot亮度与纳米粒子的体积成比例。(B)用于荧光成像的基于智能手机相机的设备的简单示意图,包括使用来自相机闪光灯的蓝光进行激发的多合一设备(左)以及通过智能手机电池为紫激光二极管供电的设备提供放大的图像(右)。(C)来自模型横向流免疫色谱分析的校准数据,显示了通过多合一设备成像的Pdots与QDs相比具有更高的灵敏度和更低的检测限。数据摘自参考文献146。版权所有2019 American Chemical Society。(D)使用MNP @ QD免疫磁分离的细胞的代表性图像(左)和曲线图(右)显示,即使HER2阴性MDA-MB的背景增加,HER2阳性SK-BR3乳腺癌细胞的计数也是恒定的-231乳腺癌细胞。数据来自参考文献150。版权所有2019美国化学会。本文尚未被其他出版物引用。图6.利用NTLM和基于智能手机的设备的分子和细胞测定平台设计蓝图。(A)发光材料及其尺寸比例图。荧光素和R-藻红蛋白(R-PE)是常用的,具有蓝色激发的明亮的荧光团。在紫色和蓝色激发下,QD,Pdot和MNP @ QD都是明亮的。绘制了每种材料的近似亮度(最右边)。QD和MNP @ QD显示的亮度范围反映了QD发射颜色随尺寸和成分的变化。Pdots显示的亮度范围大约为。60-70 nm的颗粒,反映了测量中的不确定性以及两种不同的共轭聚合物(F8BT,CNPPV)。初步估算,Pdot亮度与纳米粒子的体积成比例。(B)用于荧光成像的基于智能手机相机的设备的简单示意图,包括使用来自相机闪光灯的蓝光进行激发的多合一设备(左)以及通过智能手机电池为紫激光二极管供电的设备提供放大的图像(右)。(C)来自模型横向流免疫色谱分析的校准数据,显示了通过多合一设备成像的Pdots与QDs相比具有更高的灵敏度和更低的检测限。数据摘自参考文献146。版权所有2019 American Chemical Society。(D)使用MNP @ QD进行免疫磁分离的细胞的代表性图像(左)和曲线图(右),表明即使HER2阴性MDA-MB的背景增加,HER2阳性SK-BR3乳腺癌细胞的计数也是恒定的-231乳腺癌细胞。数据摘自参考文献150。版权所有©美国化学会2019。
更新日期:2020-11-15
down
wechat
bug