当前位置: X-MOL 学术Nat. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding
Nature Chemistry ( IF 19.2 ) Pub Date : 2020-11-16 , DOI: 10.1038/s41557-020-00563-4
Kara Ng 1, 2 , Megan Webster 3 , William P Carbery 2, 4 , Nikunjkumar Visaveliya 2 , Pooja Gaikwad 1, 2 , Seogjoo J Jang 5 , Ilona Kretzschmar 1, 3 , Dorthe M Eisele 1, 2
Affiliation  

Delocalized Frenkel excitons—coherently shared excitations among chromophores—are responsible for the remarkable efficiency of supramolecular light-harvesting assemblies within photosynthetic organisms. The translation of nature’s design principles to applications in optoelectronic devices has been limited by the fragility of the supramolecular structures used and the delicate nature of Frenkel excitons, particularly under mildly changing solvent conditions and elevated temperatures and upon deposition onto solid substrates. Here, we overcome those functionalization barriers through composition of stable supramolecular light-harvesting nanotubes enabled by tunable (~4.3–4.9 nm), uniform (±0.3 nm) cage-like scaffolds. High-resolution cryogenic electron microscopy, combined with scanning electron microscopy, broadband femtosecond transient absorption spectroscopy and near-field scanning optical microscopy revealed that excitons within the cage-like scaffolds are robust, even under extreme heat stress, and control over nanocomposite dimensions is maintained on solid substrates. Our bio-inspired nanocomposites provide a general framework for the development of next-generation organic devices made from stable supramolecular materials.



中文翻译:

由可调笼状支架实现的热应力超分子纳米复合材料中的弗伦克尔激子

离域 Frenkel 激子——发色团之间一致共享的激发——是光合生物体内超分子光捕获组件的显着效率的原因。自然的设计原则在光电器件中的应用的转化受到所用超分子结构的脆弱性和弗伦克尔激子的脆弱性的限制,特别是在温和变化的溶剂条件和升高的温度下以及沉积到固体基板上时。在这里,我们通过由可调(~4.3-4.9 nm)、均匀(±0.3 nm)笼状支架实现的稳定超分子捕光纳米管的组合来克服这些功能障碍。高分辨率低温电子显微镜,结合扫描电子显微镜,宽带飞秒瞬态吸收光谱和近场扫描光学显微镜表明,即使在极端热应力下,笼状支架内的激子也很稳定,并且在固体基材上保持对纳米复合材料尺寸的控制。我们的仿生纳米复合材料为开发由稳定的超分子材料制成的下一代有机设备提供了通用框架。

更新日期:2020-11-16
down
wechat
bug