当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A method for large-scale implantation of 3D microdevice ensembles into brain and soft tissue
Microsystems & Nanoengineering ( IF 7.9 ) Pub Date : 2020-11-16 , DOI: 10.1038/s41378-020-00210-5
Stefan A Sigurdsson 1 , Zeyang Yu 2 , Joonhee Lee 3, 4 , Arto Nurmikko 1
Affiliation  

Wireless networks of implantable electronic sensors and actuators at the microscale (sub-mm) level are being explored for monitoring and modulation of physiological activity for medical diagnostics and therapeutic purposes. Beyond the requirement of integrating multiple electronic or chemical functions within small device volumes, a key challenge is the development of high-throughput methods for the implantation of large numbers of microdevices into soft tissues with minimal damage. To that end, we have developed a method for high-throughput implantation of ~100–200 µm size devices, which are here simulated by proxy microparticle ensembles. While generally applicable to subdermal tissue, our main focus and experimental testbed is the implantation of microparticles into the brain. The method deploys a scalable delivery tool composed of a 2-dimensional array of polyethylene glycol-tipped microneedles that confine the microparticle payloads. Upon dissolution of the bioresorbable polyethylene glycol, the supporting array structure is retrieved, and the microparticles remain embedded in the tissue, distributed spatially and geometrically according to the design of the microfabricated delivery tool. We first evaluated the method in an agarose testbed in terms of spatial precision and throughput for up to 1000 passive spherical and planar microparticles acting as proxy devices. We then performed the same evaluations by implanting particles into the rat cortex under acute conditions and assessed the tissue injury produced by our method of implantation under chronic conditions.



中文翻译:

一种将 3D 微型器件集成大规模植入大脑和软组织的方法

正在探索微尺度(亚毫米)水平的可植入电子传感器和执行器的无线网络,用于监测和调节生理活动,用于医疗诊断和治疗目的。除了在小器件体积内集成多种电子或化学功能的要求之外,一个关键的挑战是开发高通量方法,以将大量微型器件植入软组织,同时损伤最小。为此,我们开发了一种高通量植入约 100–200 µm 尺寸设备的方法,此处由代理微粒集合模拟。虽然通常适用于皮下组织,但我们的主要重点和实验测试平台是将微粒植入大脑。该方法部署了一种可扩展的递送工具,该工具由二维阵列的聚乙二醇尖头微针组成,可限制微粒有效载荷。生物可吸收聚乙二醇溶解后,支撑阵列结构被回收,微粒保持嵌入组织中,根据微制造递送工具的设计在空间和几何上分布。我们首先在琼脂糖试验台中评估了该方法的空间精度和吞吐量,最多 1000 个被动球形和平面微粒充当代理设备。然后,我们通过在急性条件下将粒子植入大鼠皮层进行了相同的评估,并评估了我们在慢性条件下的植入方法所产生的组织损伤。

更新日期:2020-11-16
down
wechat
bug