当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Slippery Colloidal Crystal Monolayers for Sustainable Enhancement of Commercial Solar Cell Performance
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-11-16 , DOI: 10.1021/acsaem.0c02256
Yeon Jae Choi 1 , Seung Beom Pyun 1 , Eun Chul Cho 1
Affiliation  

The performance of photovoltaic devices can be improved and sustained when their surfaces are designed to increase light absorption of photoactive layers and minimize contaminant adsorption. Pyramid-/domelike surface structures, generally fabricated via etching/lithography, provide these two characteristics to specific solar cells. Colloid-based photonic crystal (PC) monolayers coated on customized cells, without involving special apparatus, are also known for efficiency enhancement. However, to extend the application of PC monolayers to commercial cells, it should be deeply understood first how their photonic characteristics affect light transmittance of thick windows covering the cells. Herein, the PC monolayers on glass/polymer windows (thickness: 0.45–1 mm) are observed to transmit significantly higher amounts of diffuse light at specific visible frequency ranges than bare windows. The frequencies are tuned with the colloid diameter. The results are explained by an electric field distribution study and calculations on the monolayers. The PC monolayers on these windows enhance the short-circuit currents and power conversion efficiencies of commercial amorphous and polycrystalline Si solar cells. Furthermore, strategies are suggested to fix monolayers for structure stabilization and modify their surfaces with a slippery polymer for contaminant slippage; simulated carbon dusty rains slide off the cell surfaces, sustaining the enhanced cell performance.

中文翻译:

光滑的胶体晶体单层膜,可以持续提高商业太阳能电池的性能

当将光伏器件的表面设计为增加光敏层的光吸收并最大程度地减少污染物吸附时,可以提高和维持其性能。通常通过蚀刻/光刻制造的金字塔状/圆顶状表面结构为特定的太阳能电池提供了这两个特性。在不涉及特殊设备的情况下,涂覆在定制单元上的基于胶体的光子晶体(PC)单层也是众所周知的,以提高效率。但是,为了将PC单层应用扩展到商业电池,首先应该深刻理解它们的光子特性如何影响覆盖细胞的厚窗的透光率。在此,PC单层在玻璃/聚合物窗口上(厚度:0。在特定的可见频率范围内,观察到的45–1毫米)的散射光的透射比裸窗口大得多。频率根据胶体直径进行调整。通过电场分布研究和对单层的计算来解释结果。这些窗口上的PC单层提高了商用非晶硅和多晶硅Si太阳能电池的短路电流和功率转换效率。此外,还提出了策略来固定单分子层以稳定结构,并用光滑的聚合物修饰其表面以防止污染物滑动。模拟的碳尘暴雨从电池表面滑落,维持了增强的电池性能。通过电场分布研究和对单层的计算来解释结果。这些窗口上的PC单层提高了商用非晶硅和多晶硅Si太阳能电池的短路电流和功率转换效率。此外,还提出了策略来固定单分子层以稳定结构,并用光滑的聚合物修饰其表面以防止污染物滑动。模拟的碳尘暴雨从电池表面滑落,维持了增强的电池性能。通过电场分布研究和对单层的计算来解释结果。这些窗口上的PC单层提高了商用非晶硅和多晶硅Si太阳能电池的短路电流和功率转换效率。此外,还提出了策略来固定单分子层以稳定结构,并用光滑的聚合物修饰其表面以防止污染物滑动。模拟的碳尘暴雨从电池表面滑落,维持了增强的电池性能。建议采用策略来固定单层结构以稳定结构,并用光滑的聚合物修饰其表面以防止污染物滑移;模拟的碳尘暴雨从电池表面滑落,维持了增强的电池性能。建议采用策略来固定单层结构以稳定结构,并用光滑的聚合物修饰其表面以防止污染物滑移;模拟的碳尘暴雨从电池表面滑落,维持了增强的电池性能。
更新日期:2021-01-25
down
wechat
bug