当前位置: X-MOL 学术Int. J. Polym. Anal. Charact. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural, mechanical, and dielectric properties of polyvinylchloride/graphene nano platelets composites
International Journal of Polymer Analysis and Characterization ( IF 1.7 ) Pub Date : 2020-11-16 , DOI: 10.1080/1023666x.2020.1845493
R. M. Ahmed 1 , A. A. Ibrahiem 1 , A. S. El-Bayoumi 2 , M. M. Atta 2
Affiliation  

Abstract Composites of polyvinylchloride (PVC) embedded with different ratios of graphene nano-platelets (GnP) were prepared by the casting method. Some techniques as X-ray diffraction technique (XRD), Fourier transform infrared (FT-IR), optical microscopy, and scanning electron microscopy (SEM) were investigated. The crystalline structure of GnP dominated by increasing its ratio to 2.5 wt.% in the hosting matrix compared to the amorphous structure of the pristine PVC. Microstructural analysis showed uniform distribution of GnP in PVC with some aggregates. Also, the article represents a study of the impact of GnP loading on PVC dielectric parameters such as dielectric loss, electric modulus, ac conductivity, and their dependencies on frequency and temperature. The permittivity ε' displayed an increase in its values with increasing GnP content due to the creation of a strengthened interfacial polarization phenomenon. The values of the activation energy of the polymer were decreased with increasing the content of GnP due to the growing number of conductive networks in the composites. Therefore, GnP enhanced considerably the conductivity of the polymer composites. The mechanical strength of PVC improved with increasing GnP content in which the tensile strength increased up to ∼100%. However, Young’s modulus of PVC enhanced remarkably to be about 109%. In contrast, the elongation at break of PVC decreased by GnP reinforcement from 139.5 to 28.4% by incorporate 0.25% GnP.

中文翻译:

聚氯乙烯/石墨烯纳米片复合材料的结构、机械和介电性能

摘要 采用浇铸法制备了嵌入不同比例石墨烯纳米片(GnP)的聚氯乙烯(PVC)复合材料。研究了一些技术,如 X 射线衍射技术 (XRD)、傅里叶变换红外 (FT-IR)、光学显微镜和扫描电子显微镜 (SEM)。与原始 PVC 的无定形结构相比,GnP 的晶体结构主要是将其在宿主基质中的比例增加到 2.5 重量%。微观结构分析表明,GnP 在 PVC 中分布均匀,具有一些聚集体。此外,该文章还研究了 GnP 负载对 PVC 介电参数(如介电损耗、电模量、交流电导率)及其对频率和温度的依赖性的影响。介电常数 ε' 由于增强的界面极化现象的产生,其值随着 GnP 含量的增加而增加。由于复合材料中导电网络数量的增加,聚合物的活化能值随着 GnP 含量的增加而降低。因此,GnP 大大提高了聚合物复合材料的导电性。PVC 的机械强度随着 GnP 含量的增加而提高,其中拉伸强度增加到 100%。然而,PVC 的杨氏模量显着提高至约 109%。相比之下,通过加入 0.25% GnP,PVC 的断裂伸长率通过 GnP 增强从 139.5% 降低到 28.4%。由于复合材料中导电网络数量的增加,聚合物的活化能值随着 GnP 含量的增加而降低。因此,GnP 大大提高了聚合物复合材料的导电性。PVC 的机械强度随着 GnP 含量的增加而提高,其中拉伸强度增加到 100%。然而,PVC 的杨氏模量显着提高至约 109%。相比之下,通过加入 0.25% GnP,PVC 的断裂伸长率通过 GnP 增强从 139.5% 降低到 28.4%。由于复合材料中导电网络数量的增加,聚合物的活化能值随着 GnP 含量的增加而降低。因此,GnP 大大提高了聚合物复合材料的导电性。PVC 的机械强度随着 GnP 含量的增加而提高,其中拉伸强度增加到 100%。然而,PVC 的杨氏模量显着提高至约 109%。相比之下,通过加入 0.25% GnP,PVC 的断裂伸长率通过 GnP 增强从 139.5% 降低到 28.4%。PVC 的杨氏模量显着提高,约为 109%。相比之下,通过加入 0.25% GnP,PVC 的断裂伸长率通过 GnP 增强从 139.5% 降低到 28.4%。PVC 的杨氏模量显着提高,约为 109%。相比之下,通过加入 0.25% GnP,PVC 的断裂伸长率通过 GnP 增强从 139.5% 降低到 28.4%。
更新日期:2020-11-16
down
wechat
bug