当前位置: X-MOL 学术Opt. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of gate-controlled single photon avalanche diode with high photon-detection-probability
Optics Communications ( IF 2.2 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.optcom.2020.126588
Yang Wang , Xiangliang Jin , Shengguo Cao , Yan Peng , Jun Luo

Abstract Fluorescent optical fiber temperature sensors require high-performance silicon-based single photon detectors with large-scale on-chip integration capabilities to improve the detection accuracy of the system. Therefore, this paper proposes a gate-controlled single photon avalanche diode(GC-SPAD) with high photon-detection-probability(PDP). In order to verify the high photon-detection-probability, a comparative analysis is conducted between GC-SPAD and traditional SPAD(T-SPAD) of the same size. Silvaco-TCAD is used to verify the basic principles of SPAD. The T-SPAD device and the GC-SPAD device are manufactured based on the standard 0. 18 μ m bipolar complementary-metal-oxide-semiconductor double-diffused-metal-oxide-semiconductor(BCD) process By building a passive quenching circuit, important electrical parameters of two types of SPAD device can be obtained. The test results show that the avalanche breakdown voltages of T-SPAD and GC-SPAD are 11.55V and 11.7V respectively. Under the experimental conditions of 20 °C(over-bias voltage of 2V), the PDP of T-SPAD( 20 μ m ) in the wavelength range of 440nm ∼ 720 nm reaches 22.43%, and the PDP reaches a peak(32.27%) at a wavelength of 500 nm. The dark count rate(DCR) of the device is 2.54kHz. The PDP of GC-SPAD( 20 μ m ) reaches 29.55% in the wavelength range of 440nm ∼ 720 nm, and the response peak of the device is at 500nm(42%). The DCR of GC-SPAD is only 1.11kHz. Hence, compared with other SPAD devices of the same type, the PDP and the DCR of GC-SPAD device has obvious advantages.

中文翻译:

高光子探测概率门控单光子雪崩二极管分析

摘要 荧光光纤温度传感器需要具有大规模片上集成能力的高性能硅基单光子探测器来提高系统的探测精度。因此,本文提出了一种具有高光子探测概率(PDP)的门控单光子雪崩二极管(GC-SPAD)。为了验证高光子探测概率,对GC-SPAD与相同尺寸的传统SPAD(T-SPAD)进行了对比分析。Silvaco-TCAD用于验证SPAD的基本原理。T-SPAD器件和GC-SPAD器件基于标准的0. 18 μm双极互补金属氧化物半导体双扩散金属氧化物半导体(BCD)工艺制造通过构建无源淬火电路,可以获得两种SPAD器件的重要电气参数。测试结果表明,T-SPAD和GC-SPAD的雪崩击穿电压分别为11.55V和11.7V。在20℃(2V过偏压)实验条件下,T-SPAD(20 μm)在440nm~720nm波长范围内的PDP达到22.43%,PDP达到峰值(32.27%) ) 波长为 500 nm。器件的暗计数率(DCR)为 2.54kHz。GC-SPAD(20 μm)的PDP在440nm~720nm波长范围内达到29.55%,器件响应峰值在500nm(42%)。GC-SPAD 的 DCR 仅为 1.11kHz。因此,与其他同类型SPAD器件相比,GC-SPAD器件的PDP和DCR具有明显的优势。测试结果表明,T-SPAD和GC-SPAD的雪崩击穿电压分别为11.55V和11.7V。在20℃(2V过偏压)实验条件下,T-SPAD(20 μm)在440nm~720nm波长范围内的PDP达到22.43%,PDP达到峰值(32.27%) ) 波长为 500 nm。器件的暗计数率(DCR)为 2.54kHz。GC-SPAD(20 μm)的PDP在440nm~720nm波长范围内达到29.55%,器件响应峰值在500nm(42%)。GC-SPAD 的 DCR 仅为 1.11kHz。因此,与其他同类型SPAD器件相比,GC-SPAD器件的PDP和DCR具有明显的优势。测试结果表明,T-SPAD和GC-SPAD的雪崩击穿电压分别为11.55V和11.7V。在20℃(2V过偏压)实验条件下,T-SPAD(20 μm)在440nm~720nm波长范围内的PDP达到22.43%,PDP达到峰值(32.27%) ) 波长为 500 nm。器件的暗计数率(DCR)为 2.54kHz。GC-SPAD(20 μm)的PDP在440nm~720nm波长范围内达到29.55%,器件响应峰值在500nm(42%)。GC-SPAD 的 DCR 仅为 1.11kHz。因此,与其他同类型SPAD器件相比,GC-SPAD器件的PDP和DCR具有明显的优势。T-SPAD(20 μm)在440nm~720nm波长范围内PDP达到22.43%,PDP在500nm波长处达到峰值(32.27%)。器件的暗计数率(DCR)为 2.54kHz。GC-SPAD(20 μm)的PDP在440nm~720nm波长范围内达到29.55%,器件响应峰值在500nm(42%)。GC-SPAD 的 DCR 仅为 1.11kHz。因此,与其他同类型SPAD器件相比,GC-SPAD器件的PDP和DCR具有明显的优势。T-SPAD(20 μm)在440nm~720nm波长范围内PDP达到22.43%,PDP在500nm波长处达到峰值(32.27%)。器件的暗计数率(DCR)为 2.54kHz。GC-SPAD(20 μm)的PDP在440nm~720nm波长范围内达到29.55%,器件响应峰值在500nm(42%)。GC-SPAD 的 DCR 仅为 1.11kHz。因此,与其他同类型SPAD器件相比,GC-SPAD器件的PDP和DCR具有明显的优势。
更新日期:2021-03-01
down
wechat
bug