当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetron sputtering: determining scaling relations towards real power discharges using 3D particle-in-cell Monte Carlo models
Plasma Sources Science and Technology ( IF 3.3 ) Pub Date : 2020-11-14 , DOI: 10.1088/1361-6595/abb3a0
R Tonneau 1 , A Pflug 2 , S Lucas 1
Affiliation  

Plasma simulation of glow-magnetized discharges with the particle-in-cell Monte Carlo (PICMC) method is constraint to low current densities because of otherwise huge computational requirements. The present work aims to show, how it is nevertheless possible to extrapolate information for higher current densities similar to realistic lab or industrial conditions by applying a scaling strategy on the simulation. This is demonstrated for a DC magnetron sputtering (DCMS) case study involving the following species: Ar, Ar+, Ti, Ti+ and electrons. The evolution of the electron density is extracted from the simulation and compared with experimental values obtained with a Langmuir probe. A linear relationship between the electron density and the discharge current is highlighted and explained by studying the reaction rates of both ionization and excitation collisions. This allows to scale the reaction rates with the discharge parameters: the Ar-electron impact ionization and excitation rates scale linearly with the discharge current, while the electron impact ionization rate of sputtered species scales quadratically with the discharge current. The simulations also feature propagating plasma instabilities, so-called spokes, but in average, the above-mentioned scaling laws hold. Consequently, the flux of particles at the substrate during a plasma deposition process at realistic power density can be extrapolated from a 3D PICMC simulation at lower power density. Finally, the validity domain of the scaling strategy is discussed in the light of the model constraints.



中文翻译:

磁控溅射:使用3D单元内粒子蒙特卡洛模型确定与实际功率放电的比例关系

单元格内蒙特卡洛(PICMC)方法对辉光磁化放电的等离子体进行模拟,这限制了低电流密度,因为否则需要大量的计算。本工作旨在展示如何通过在模拟中应用缩放策略来推断类似于现实实验室或工业条件的更高电流密度的信息。涉及以下物质的直流磁控溅射(DCMS)案例研究证明了这一点:Ar,Ar +,Ti,Ti +和电子。从模拟中提取出电子密度的变化,并将其与使用Langmuir探针获得的实验值进行比较。通过研究电离和激发碰撞的反应速率,可以突出并说明电子密度与放电电流之间的线性关系。这允许根据放电参数来缩放反应速率:Ar电子碰撞电离和激发速率与放电电流成线性比例,而溅射物种的电子碰撞电离速率与放电电流成二次比例关系。该模拟还具有传播的等离子体不稳定性(所谓的辐条)的特征,但平均而言,上述缩放定律仍然有效。所以,可以从3D PICMC仿真以较低的功率密度推断出在实际功率密度下的等离子体沉积过程中基板上的粒子通量。最后,根据模型约束,讨论了扩展策略的有效性域。

更新日期:2020-11-14
down
wechat
bug