当前位置: X-MOL 学术Int. J. Mod. Phys. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of spin–orbit coupling on the hot-electron energy relaxation in nanowires
International Journal of Modern Physics B ( IF 2.6 ) Pub Date : 2020-11-13 , DOI: 10.1142/s0217979220503221
A. L. Vartanian 1 , A. L. Asatryan 1 , A. G. Stepanyan 1 , K. A. Vardanyan 2 , A. A. Kirakosyan 1
Affiliation  

The energy relaxation of hot electrons is proposed based on the spin–orbit (SO) interaction of both Rashba and Dresselhaus types with the effect of hot phonons. A continuum theory of optical phonons in nanowires taking into account the influence of confinement is used to study the hot-electron energy relaxation. The energy relaxation due to both confined (CO) and interface (IO) optical phonon emission on nanowire radius, electrical field strength, parameters of SO couplings and electron temperature is calculated. For considered values of the nanowire radius as well as other system parameters, scattering by IO phonons prevails over scattering by CO phonons. The presence of an electric field leads to the decrease of power loss in transitions between states with the same spin quantum numbers. With the increase of the electric field strength, the influence of the Dresselhaus SO interaction on the energy relaxation rate decreases. The effect of SO interaction does not change the previously obtained increasing dependence of power loss on electron temperature. The sensitivity of energy relaxation to the electric field also through the Rashba parameter allows controlling the rate of energy by electric field.

中文翻译:

自旋轨道耦合对纳米线热电子能量弛豫的影响

基于 Rashba 和 Dresselhaus 类型的自旋轨道 (SO) 相互作用以及热声子的影响,提出了热电子的能量弛豫。考虑到约束影响的纳米线中光学声子的连续统理论用于研究热电子能量弛豫。计算了由于受限 (CO) 和界面 (IO) 光声子发射在纳米线半径、电场强度、SO 耦合参数和电子温度上的能量弛豫。对于考虑的纳米线半径值以及其他系统参数,IO 声子的散射优于 CO 声子的散射。电场的存在导致具有相同自旋量子数的状态之间的跃迁中的功率损耗减少。随着电场强度的增加,Dresselhaus SO 相互作用对能量弛豫率的影响降低。SO 相互作用的影响不会改变先前获得的功率损耗对电子温度的依赖性增加。能量弛豫对电场的敏感性也通过 Rashba 参数允许通过电场控制能量速率。
更新日期:2020-11-13
down
wechat
bug