当前位置: X-MOL 学术Phys. Rev. Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermoelectrohydrodynamic convection in parallel plate capacitors under dielectric heating conditions
Physical Review Fluids ( IF 2.5 ) Pub Date : 2020-11-13 , DOI: 10.1103/physrevfluids.5.113503
Harunori N. Yoshikawa , Changwoo Kang , Inoccent Mutabazi , Florian Zaussinger , Peter Haun , Christoph Egbers

The thermal convection of dielectric fluid in an alternating electric field is investigated by the linear stability theory. We consider fluid layers confined in parallel plate capacitors without any externally imposed temperature difference. Only the internal heating by dielectric loss generates temperature gradients. The thermal variation of fluid permittivity induces electrical heterogeneity in the fluid and results in the dielectrophoretic (DEP) force, which can drive the convective motion of fluid. Assuming electric fields of high frequency, we develop a theoretical model to describe the flow dynamics under dielectric heating. For simplicity, the capacitor is placed either in microgravity environments or in a horizontal configuration on the earth. We determine the critical conditions for the DEP force to overcome stabilizing diffusion effects for convection generation. All the analyses are performed in the light of the similarity between the DEP force and the thermal Archimedean buoyancy, introducing an effective electric gravity. Examining energy transfer processes to convection flow, we confirm that the driving mechanism of convection in microgravity is similar to the ordinary thermal convection but in an electric effective gravity except for a stabilizing thermoelectric feedback effect. In the horizontal configuration, we show that the competition of the electric gravity with the earth's gravity affects the critical conditions and enriches the flow patterns of the resulting convection.

中文翻译:

介质加热条件下平行板电容器中的热电流体对流

利用线性稳定性理论研究了介电流体在交变电场中的热对流。我们认为流体层被限制在平行板电容器中,而没有任何外部施加的温差。仅由于介电损耗的内部加热会产生温度梯度。流体介电常数的热变化在流体中引起电异质性,并导致介电泳(DEP)力,它可以驱动流体的对流运动。假设高频电场,我们建立了一个理论模型来描述介电加热下的流动动力学。为简单起见,将电容器放置在微重力环境中或水平放置在地球上。我们确定DEP力克服对流产生的稳定扩散效应的临界条件。根据DEP力和热阿基米德浮力之间的相似性进行所有分析,从而引入有效的电引力。检查对流的能量传递过程,我们确认对流在微重力中的驱动机制与普通的热对流相似,但在电有效重力中除稳定热电反馈效应外。在水平构型中,我们显示出电重力与地球重力的竞争影响了临界条件并丰富了对流的流动模式。根据DEP力和热阿基米德浮力之间的相似性进行所有分析,从而引入有效的电重力。检查对流的能量传递过程,我们确认对流在微重力中的驱动机制与普通的热对流相似,但在电有效重力中除稳定热电反馈效应外。在水平构型中,我们显示出电重力与地球重力的竞争影响了临界条件并丰富了对流的流动模式。根据DEP力和热阿基米德浮力之间的相似性进行所有分析,从而引入有效的电引力。检查对流的能量传递过程,我们确认对流在微重力中的驱动机制与普通的热对流相似,但在电有效重力中除稳定热电反馈效应外。在水平构型中,我们显示出电重力与地球重力的竞争影响了临界条件并丰富了对流的流动模式。我们确认,微重力对流的驱动机制与普通的热对流相似,但在电有效重力下除稳定热电反馈效应外。在水平配置中,我们显示出电重力与地球重力的竞争影响了临界条件,并丰富了对流的流动模式。我们确认,微重力对流的驱动机制与普通的热对流相似,但在电有效重力下除稳定热电反馈效应外。在水平构型中,我们显示出电重力与地球重力的竞争影响了临界条件并丰富了对流的流动模式。
更新日期:2020-11-13
down
wechat
bug