当前位置: X-MOL 学术Phys. Rev. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Failure processes of cemented granular materials
Physical Review E ( IF 2.2 ) Pub Date : 2020-11-13 , DOI: 10.1103/physreve.102.052903
Yuta Yamaguchi , Soumyajyoti Biswas , Takahiro Hatano , Lucas Goehring

The mechanics of cohesive or cemented granular materials is complex, combining the heterogeneous responses of granular media, like force chains, with clearly defined material properties. Here we use a discrete element model simulation, consisting of an assemblage of elastic particles connected by softer but breakable elastic bonds, to explore how this class of material deforms and fails under uniaxial compression. We are particularly interested in the connection between the microscopic interactions among the grains or particles and the macroscopic material response. To this end, the properties of the particles and the stiffness of the bonds are matched to experimental measurements of a cohesive granular medium with tunable elasticity. The criterion for breaking a bond is also based on an explicit Griffith energy balance, with realistic surface energies. By varying the initial volume fraction of the particle assembles we show that this simple model reproduces a wide range of experimental behaviors, both in the elastic limit and beyond it. These include quantitative details of the distinct failure modes of shear-banding, ductile failure, and compaction banding or anticracks, as well as the transitions between these modes. The present work, therefore, provides a unified framework for understanding the failure of porous materials such as sandstone, marble, powder aggregates, snow, and foam.

中文翻译:

胶结颗粒材料的破坏过程

粘性或胶结粒状材料的力学非常复杂,将粒状介质(如力链)的异质响应与明确定义的材料属性相结合。在这里,我们使用离散单元模型模拟,该模拟由通过较软但易断裂的弹性键连接的一组弹性粒子组成,以探索此类材料在单轴压缩下如何变形和破坏。我们对颗粒或颗粒之间的微观相互作用与宏观材料响应之间的联系特别感兴趣。为此,颗粒的性质和键的刚度与具有可调弹性的内聚颗粒介质的实验测量相匹配。打破纽带的标准还基于明确的格里菲斯能量平衡,具有逼真的表面能。通过改变粒子集合体的初始体积分数,我们证明了这个简单的模型在弹性极限内和超出弹性极限时都可以再现各种实验行为。这些包括剪切带,延性破坏,压实带或抗裂的不同破坏模式的定量细节,以及这些模式之间的过渡。因此,目前的工作为理解多孔材料(例如砂岩,大理石,粉状骨料,雪和泡沫)的失效提供了一个统一的框架。延性失效,压实带或抗裂以及这些模式之间的过渡。因此,目前的工作为理解多孔材料(例如砂岩,大理石,粉状骨料,雪和泡沫)的失效提供了一个统一的框架。延性失效,压实带或抗裂以及这些模式之间的过渡。因此,目前的工作为理解多孔材料(例如砂岩,大理石,粉状骨料,雪和泡沫)的失效提供了一个统一的框架。
更新日期:2020-11-13
down
wechat
bug