当前位置: X-MOL 学术Genet. Mol. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae
Genetics and Molecular Biology ( IF 1.7 ) Pub Date : 2020-01-01 , DOI: 10.1590/1678-4685-gmb-2020-0173
Douglas Elias Santos 1 , Anderson de Oliveira Souza 1 , Gustavo Jacomini Tibério 1 , Luciane Carla Alberici 1 , Klaus Hartfelder 1
Affiliation  

Abstract The expression of morphological differences between the castes of social bees is triggered by dietary regimes that differentially activate nutrient-sensing pathways and the endocrine system, resulting in differential gene expression during larval development. In the honey bee, Apis mellifera, mitochondrial activity in the larval fat body has been postulated as a link that integrates nutrient-sensing via hypoxia signaling. To understand regulatory mechanisms in this link, we measured reactive oxygen species (ROS) levels, oxidative damage to proteins, the cellular redox environment, and the expression of genes encoding antioxidant factors in the fat body of queen and worker larvae. Despite higher mean H2O2 levels in queens, there were no differences in ROS-mediated protein carboxylation levels between the two castes. This can be explained by their higher expression of antioxidant genes (MnSOD, CuZnSOD, catalase, and Gst1) and the lower ratio between reduced and oxidized glutathione (GSH/GSSG). In worker larvae, the GSG/GSSH ratio is elevated and antioxidant gene expression is delayed. Hence, the higher ROS production resulting from the higher respiratory metabolism in queen larvae is effectively counterbalanced by the up-regulation of antioxidant genes, avoiding oxidative damage. In contrast, the delay in antioxidant gene expression in worker larvae may explain their endogenous hypoxia response.

中文翻译:

蜜蜂 (Apis mellifera L.) 种姓发育中抗氧化系统基因的差异表达减轻了蜂王幼虫中 ROS 介导的氧化损伤

摘要 社会蜜蜂种姓之间形态差异的表达是由差异激活营养感应途径和内分泌系统的饮食制度引发的,导致幼虫发育过程中基因表达的差异。在蜜蜂(Apis mellifera)中,幼虫脂肪体中的线粒体活动被假定为通过缺氧信号整合营养感应的环节。为了了解这一环节中的调控机制,我们测量了活性氧 (ROS) 水平、对蛋白质的氧化损伤、细胞氧化还原环境,以及蜂王和工蜂幼虫脂肪体中编码抗氧化因子的基因的表达。尽管皇后的平均 H2O2 水平较高,但两个种姓之间的 ROS 介导的蛋白质羧化水平没有差异。这可以通过它们的抗氧化基因(MnSOD、CuZnSOD、过氧化氢酶和 Gst1)的更高表达以及还原型和氧化型谷胱甘肽之间的较低比率 (GSH/GSSG) 来解释。在工人幼虫中,GSG/GSSH 比率升高,抗氧化基因表达延迟。因此,蜂王幼虫较高的呼吸代谢导致较高的 ROS 产生被抗氧化基因的上调有效抵消,避免了氧化损伤。相比之下,工蚁幼虫抗氧化基因表达的延迟可能解释了它们的内源性缺氧反应。蜂王幼虫较高的呼吸代谢产生的较高的 ROS 产量被抗氧化基因的上调有效抵消,避免了氧化损伤。相比之下,工蚁幼虫抗氧化基因表达的延迟可能解释了它们的内源性缺氧反应。蜂王幼虫较高的呼吸代谢产生的较高的 ROS 产量被抗氧化基因的上调有效抵消,避免了氧化损伤。相比之下,工蚁幼虫抗氧化基因表达的延迟可能解释了它们的内源性缺氧反应。
更新日期:2020-01-01
down
wechat
bug