当前位置: X-MOL 学术Prog. Neurobiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics
Progress in Neurobiology ( IF 6.7 ) Pub Date : 2020-11-13 , DOI: 10.1016/j.pneurobio.2020.101951
James M Shine 1
Affiliation  

The human brain is a complex, adaptive system comprised of billions of cells with trillions of connections. The interactions between the elements of the system oppose this seemingly limitless capacity by constraining the system’s dynamic repertoire, enforcing distributed neural states that balance integration and differentiation. How this trade-off is mediated by the brain, and how the emergent, distributed neural patterns give rise to cognition and awareness, remains poorly understood. Here, I argue that the thalamus is well-placed to arbitrate the interactions between distributed neural assemblies in the cerebral cortex. Different classes of thalamocortical connections are hypothesized to promote either feed-forward or feedback processing modes in the cerebral cortex. This activity can be conceptualized as emerging dynamically from an evolving attractor landscape, with the relative engagement of distinct distributed circuits providing differing constraints over the manner in which brain state trajectories change over time. In addition, inputs to the distinct thalamic populations from the cerebellum and basal ganglia, respectively, are proposed to differentially shape the attractor landscape, and hence, the temporal evolution of cortical assemblies. The coordinated engagement of these neural macrosystems is then shown to share key characteristics with prominent models of cognition, attention and conscious awareness. In this way, the crucial role of the thalamus in mediating the distributed, multi-scale network organization of the central nervous system can be related to higher brain function.



中文翻译:

丘脑整合了大脑的宏观系统,以促进复杂的、自适应的大脑网络动力学

人脑是一个复杂的自适应系统,由数十亿个细胞和数万亿个连接组成。系统元素之间的相互作用通过限制系统的动态曲目、强制平衡整合和分化的分布式神经状态来反对这种看似无限的能力。这种权衡是如何由大脑调节的,以及新兴的分布式神经模式如何产生认知和意识,仍然知之甚少。在这里,我认为丘脑很适合仲裁大脑皮层中分布式神经组件之间的相互作用。假设不同类别的丘脑皮质连接可以促进大脑皮层的前馈或反馈处理模式。这种活动可以被概念化为从不断发展的吸引子景观中动态出现,不同分布式电路的相对参与为大脑状态轨迹随时间变化的方式提供了不同的约束。此外,分别来自小脑和基底神经节的不同丘脑种群的输入被提议以不同地塑造吸引子景观,因此,皮质组件的时间演变。然后显示这些神经宏观系统的协调参与与认知、注意力和意识意识的突出模型共享关键特征。通过这种方式,丘脑在调节中枢神经系统分布式、多尺度网络组织中的关键作用可能与更高的大脑功能有关。不同分布式电路的相对参与对大脑状态轨迹随时间变化的方式提供了不同的约束。此外,分别来自小脑和基底神经节的不同丘脑种群的输入被提议以不同地塑造吸引子景观,因此,皮质组件的时间演变。然后显示这些神经宏观系统的协调参与与认知、注意力和意识意识的突出模型共享关键特征。通过这种方式,丘脑在调节中枢神经系统分布式、多尺度网络组织中的关键作用可能与更高的大脑功能有关。不同分布式电路的相对参与对大脑状态轨迹随时间变化的方式提供了不同的约束。此外,分别来自小脑和基底神经节的不同丘脑种群的输入被提议以不同地塑造吸引子景观,因此,皮质组件的时间演变。然后显示这些神经宏观系统的协调参与与认知、注意力和意识意识的突出模型共享关键特征。通过这种方式,丘脑在调节中枢神经系统分布式、多尺度网络组织中的关键作用可能与更高的大脑功能有关。

更新日期:2020-11-13
down
wechat
bug