当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor
Nano Energy ( IF 16.8 ) Pub Date : 2020-11-13 , DOI: 10.1016/j.nanoen.2020.105606
Yaqiong Wang , Shi Tao , He Lin , Gaopeng Wang , Kangning Zhao , Rongmin Cai , Kewen Tao , Chengxu Zhang , Mingzi Sun , Jue Hu , Bolong Huang , Shihe Yang

The fabrication of porous structure in the ultrathin materials still faces high difficulties. In particular, the precise modulations in the porosity and size are highly challenging. In this work, we have introduced small molecules to overcome such a challenge. And this substantially contributes to the energy related applications, especially to the water-energy (WE) treatment. Electrocatalytic water-splitting is hindered by the sluggish kinetics of water oxidation, requiring efficient earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Herein we demonstrate the robust OER activity by introducing metal and oxygen multivacancies in noble-metal-free layered double hydroxides (LDHs) through the specific electron-withdrawing organic molecule methyl-isorhodanate (CH3NCS). Our work reveals that the metal and oxygen vacancies endow NiFe LDH with enhanced electron transfer and modulate the H2O adsorption, thereby boosting the OER electrocatalytic properties. Remarkably, the best-performing laminar NiFe LDH nanosheets with metal and oxygen multivacancies (v-L-LDHs) show an ultra-low overpotential of 230 mV at 100 mA cm−2 and Tafel slope of 37.1 mV dec−1. Density functional theory (DFT) has revealed the improved OER performance is realized by the co-existence of metal and O vacancies in NiFe LDH, where the defective region activates the electroactivity of Ni sites and O sites to promote the electron transfer and intermediate transformation. The Fe sites play a key role to preserve the high electroactivity of the Ni sites in long-term applications. The superior OER performance underpins the high potential of the reported facile organic anchor strategy for designing and synthesizing advanced electrocatalysts in both LDH and other potential 2D layered materials.



中文翻译:

原子靶向NiFe LDH以利用小有机锚定为OER催化创造多个空位

在超薄材料中制造多孔结构仍然面临很高的困难。特别地,孔隙率和尺寸的精确调节是极具挑战性的。在这项工作中,我们引入了小分子来克服这一挑战。这极大地促进了与能源有关的应用,特别是对水能(WE)处理。水氧化反应迟钝的动力学阻碍了电催化水分解,需要有效的地球上富氧的电催化剂来进行氧释放反应(OER)。本文中,我们通过特定的吸电子有机分子异二十二烷酸甲酯(CH 3)在无贵金属层状双氢氧化物(LDHs)中引入金属和氧的多个空位,证明了其强大的OER活性。NCS)。我们的工作表明,金属和氧空位赋予NiFe LDH增强的电子转移,并调节H 2 O的吸附,从而提高OER的电催化性能。值得注意的是,具有金属和氧多空位(v -L-LDHs)的性能最佳的层状NiFe LDH纳米片在100 mA cm -2时表现出230 mV的超低超电势,Tafel斜率在dec -1时为37.1 mV。密度泛函理论(DFT)显示,通过在NiFe LDH中同时存在金属和O空位,可以提高OER性能,其中缺陷区激活Ni位和O位的电活性,从而促进电子转移和中间转变。在长期应用中,Fe位点在保持Ni位点的高电活性方面起着关键作用。优异的OER性能巩固了已报道的用于在LDH和其他潜在的2D层状材料中设计和合成高级电催化剂的简便有机锚固策略的巨大潜力。

更新日期:2020-12-05
down
wechat
bug