当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Solute dispersion in micropolar-Newtonian fluid flowing through porous layered tubes with absorbing walls
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.icheatmasstransfer.2020.104724
Pallav Dhanendrakumar Shah , Ashish Tiwari , Satyendra Singh Chauhan

Abstract The physical mechanism of heat and mass transfer in solute dispersion in a two-fluid model of the blood flow through porous layered tubes with absorbing walls has been studied in the present work. For a more realistic representation of the blood flow in microvessels, the two-fluid approach is employed by considering the fluid in which the blood particles like RBCs, WBCs, and platelets are suspended as a micropolar fluid in the core region and the cell-free layer of plasma as Newtonian fluid in the peripheral region. A thin Brinkman layer mathematically governed by the Brinkman equation replicates the mechanical aspects of the porous layer near the tube wall. Either no-spin or no-couple stress condition at the micropolar-Newtonian fluid interface has been taken in to account to compare our findings with previous studies and the stress-jump condition of Ochoa-Tapia and Whitaker (J.A. Ochoa-Tapia and S. Whitaker, Int. J. Heat Mass Transfer 38 (1995) 2635–2646) is employed at the fluid-porous interface. A uniform magnetic field has also been applied in the transverse direction of the flow pattern to understand some of the clinically relevant aspects of blood flow in the cardiovascular system. Analytical expressions for the velocity and temperature field are used to obtain the expressions for diffusion coefficients and mean concentration by following the method of Sankarasubramanian and Gill (R. Sankarasubramanian and W.N. Gill, Proc. R. Soc. London. Ser. A 333 (1973) 115–132), to analyze the solute dispersion process in fluid flowing through tubes with wall reactions. The effect of plasma layer thickness, radiation parameter, coupling number, micro-rotation, thermal conductivity, Hartmann number, and permeability on the diffusion coefficients and mean concentration of the miscible species are discussed and depicted graphically. The multi-motivational work with the combination of a porous layer near the wall and heat transfers may leave a significant impact on drug delivery through the blood vessels for the treatment of cardiovascular diseases.

中文翻译:

微极牛顿流体中的溶质分散体流经具有吸收壁的多孔层状管

摘要 目前的工作已经研究了血流通过多孔层状管和吸收壁的双流体模型中溶质分散中的传热和传质物理机制。为了更真实地表示微血管中的血流,采用双流体方法,将红细胞、白细胞和血小板等血液颗粒悬浮在核心区域的微极性流体和无细胞的流体中外围区域中作为牛顿流体的等离子体层。由 Brinkman 方程数学控制的薄 Brinkman 层复制了管壁附近多孔层的机械方面。已考虑微极-牛顿流体界面处的无自旋或无耦合应力条件,以将我们的发现与先前的研究以及 Ochoa-Tapia 和 Whitaker(JA Ochoa-Tapia 和 S. Whitaker, Int. J. Heat Mass Transfer 38 (1995) 2635–2646) 用于流体-多孔界面。均匀磁场也已应用于流动模式的横向方向,以了解心血管系统中血流的一些临床相关方面。按照 Sankarasubramanian 和 Gill (R. Sankarasubramanian and WN Gill, Proc. R. Soc. London. Ser. A 333 (1973) 的方法,速度和温度场的解析表达式用于获得扩散系数和平均浓度的表达式) 115–132), 分析流经管壁反应的流体中的溶质扩散过程。等离子体层厚度、辐射参数、耦合数、微旋转、热导率、哈特曼数和渗透率对可混溶物质的扩散系数和平均浓度的影响进行了讨论和图示。靠近壁的多孔层和热传递相结合的多动机工作可能会对通过血管的药物输送产生重大影响,以治疗心血管疾病。对扩散系数和可混溶物质的平均浓度的渗透率和渗透率进行了讨论并以图形方式描述。靠近壁的多孔层和热传递相结合的多动机工作可能会对通过血管的药物输送产生重大影响,以治疗心血管疾病。对扩散系数和可混溶物质的平均浓度的渗透率和渗透率进行了讨论并以图形方式描述。靠近壁的多孔层和热传递相结合的多动机工作可能会对通过血管的药物输送产生重大影响,以治疗心血管疾病。
更新日期:2020-12-01
down
wechat
bug