当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling management optimization of temperature and thermal stress inside 3D-IC with multi-cores and various power density
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.icheatmasstransfer.2020.105021
Bin Ding , Zhi-Hao Zhang , Liang Gong , Chuan-Yong Zhu , Ming-Hai Xu

Abstract A three-dimensional integrated circuit (3D-IC) is representative of technologies that have achieved the “beyond Moore's Law” concept. However, a 3D-IC suffers from the thornier problems of local overheating and thermal stress concentration as a result of its higher integration. Herein, a 3D-IC model with a real microprocessor structure to explore the temperature and thermal stress distributions under a closed microchannel liquid cooling condition. Finally, the effects of the structural parameters, flow direction of the cooling water, and core area overclocking on the maximum temperature, thermal stress distribution, and total pressure drop inside the 3D-IC model were investigated. The numerical results indicated that a mixed arrangement of micro-pin fins in the bottom microchannel and in-line arrangement in the upper microchannel was beneficial for balancing the maximum temperature and pressure drop. Moreover, the maximum thermal stress decreased by 34% after parallel flow and an optimized upper microchannel structure were adopted in the 3D-IC. Furthermore, the reliability of the chip with the optimized structure was governed by the thermal failure risk instead of thermal stress. Therefore, to balance the reliability and pumping power consumption of chips, maintaining the maximum temperature at 333 K could be a reference for 3D-IC coupling management.

中文翻译:

多核、多种功率密度的3D-IC内部温度与热应力耦合管理优化

摘要 三维集成电路(3D-IC)是实现“超越摩尔定律”概念的技术代表。然而,由于其更高的集成度,3D-IC 会遇到更棘手的局部过热和热应力集中问题。在此,一个具有真实微处理器结构的 3D-IC 模型用于探索封闭微通道液体冷却条件下的温度和热应力分布。最后,研究了结构参数、冷却水流向、核心区超频对3D-IC模型内部最高温度、热应力分布和总压降的影响。数值结果表明,底部微通道中的微针翅片和上部微通道中的在线排列混合排列有利于平衡最大温度和压降。此外,平行流动后最大热应力降低了34%,3D-IC采用了优化的上部微通道结构。此外,具有优化结构的芯片的可靠性由热故障风险而非热应力决定。因此,为了平衡芯片的可靠性和泵浦功耗,将最高温度保持在 333 K 可以作为 3D-IC 耦合管理的参考。平行流动后最大热应力降低了34%,3D-IC采用了优化的上部微通道结构。此外,具有优化结构的芯片的可靠性由热故障风险而非热应力决定。因此,为了平衡芯片的可靠性和泵浦功耗,将最高温度保持在 333 K 可以作为 3D-IC 耦合管理的参考。平行流动后最大热应力降低了34%,3D-IC采用了优化的上部微通道结构。此外,具有优化结构的芯片的可靠性由热故障风险而非热应力决定。因此,为了平衡芯片的可靠性和泵浦功耗,将最高温度保持在 333 K 可以作为 3D-IC 耦合管理的参考。
更新日期:2021-01-01
down
wechat
bug