当前位置: X-MOL 学术J. Appl. Physiol. Cell Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro
American Journal of Physiology-Cell Physiology ( IF 5.0 ) Pub Date : 2020-11-11 , DOI: 10.1152/ajpcell.00355.2020
Savannah R Moses 1 , Jonathan J Adorno 2 , Andre F Palmer 1 , Jonathan W Song 3, 4
Affiliation  

To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the function of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels assembled in vitro using microfabrication techniques. Microfabricated vessels, commonly referred to as "vessels on a chip," are from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport, cell-cell interactions, and proper 3-D extracellular matrix environments under well-defined culture conditions. Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared to established cell culture techniques, and the potential of these models for advancing microvascular research. This review highlights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future opportunities for vessel on a chip models.

中文翻译:


用于体外研究微血管生理学、运输和功能的芯片血管模型



为了了解微脉管系统如何生长和重塑,研究人员需要模拟活体组织功能的可重复系统。使用微加工技术在体外组装的工程微血管为满足这一重要需求做出了创新贡献。微加工血管,通常称为“芯片上的血管”,来自一类细胞培养技术,该技术独特地将微尺度流动现象、组织级生物分子运输、细胞与细胞相互作用以及良好的 3-D 细胞外基质环境结合起来。 -定义的培养条件。在这里,我们讨论微制造血管的使能属性,使这些模型与现有的细胞培养技术相比更加生理化,以及这些模型在推进微血管研究方面的潜力。这篇综述强调了微血管运输和生理学的关键特征,批判性地讨论了研究微血管系统的不同微加工策略的优点和局限性,并为芯片上的血管模型当前的挑战和未来的机遇提供了视角。
更新日期:2020-11-12
down
wechat
bug