当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics
Nano Energy ( IF 16.8 ) Pub Date : 2020-11-12 , DOI: 10.1016/j.nanoen.2020.105601
Hao Luo , Bo Wang , Fangdong Wu , Jiahuang Jian , Kai Yang , Fan Jin , Bowen Cong , Yu Ning , Yu Zhou , Dianlong Wang , Huakun Liu , Shixue Dou

In-situ self-transformation is proved to be an effective strategy to design high-performance cathodes for aqueous zinc-ion batteries (ZIBs). However, the inferior transformation efficiencies during phase transition limit its further application. Herein, a 3D spongy VO2-graphene (VO2-rG) precursor has been designed for achieving the ultra-efficient in-situ self-transformation process from VO2-rG into multifaceted V2O5·nH2O-graphene composite (VOH-rG). Benefiting from the highly conductive heterointerfaces, rich reaction sites and numerous ions diffusion channels of VO2-rG, almost 100% VO2 nanobelts are converted into VOH during the first charging with few side reactions, indicating a highly efficient transformation kinetics. This strategy enables structural modulation from micro-nano level to molecular level by integrating pre-inserted H2O molecules and constructing 3D porous heterogeneous architecture into the VOH-rG cathode simultaneously, leading to fast and enduring Zn2+ (de)intercalation kinetics. Consequently, the VOH-rG cathode exhibits high capacity of 466 mA h g−1 at 0.1 A g−1, superior rate performance (190 mA h g−1 even at 20 A g−1) and excellent cycling stability with 100% capacity retention over 5000 cycles. Moreover, the assembled VOH-rG//Zn flexible quasi-solid-state batteries also present impressive performance. Such an ultra-efficient in-situ self-transformation strategy would pave a new way to explore promising electrode materials for advanced energy storage.



中文翻译:

协同的纳米结构和异质界面设计促进了具有良好动力学的锌离子电池正极的超高效原位自转化

事实证明,原位自转化是设计用于水性锌离子电池(ZIBs)的高性能阴极的有效策略。但是,相变过程中转换效率较低,限制了其进一步的应用。在本文中,设计了一种3D海绵状VO 2-石墨烯(VO 2 -rG)前体,以实现从VO 2 -rG到多面V 2 O 5 ·nH 2 O-石墨烯复合材料的超高效原位自转化过程。(VOH-rG)。受益于VO 2 -rG(几乎100%VO 2)的高导电异质界面,丰富的反应位点和众多离子扩散通道纳米带在第一次加料过程中几乎没有副反应地转化为VOH,表明高效的转化动力学。通过整合预先插入的H 2 O分子并在VOH-rG阴极中同时构建3D多孔异质结构,该策略可以实现从微纳米级到分子级的结构调节,从而实现快速持久的Zn 2+(脱嵌)动力学。因此,VOH-RG阴极表现出466毫安ħ克高容量-1 0.1 A G -1,优异的倍率性能(190毫安ħ克-1甚至在20 A G -1)和出色的循环稳定性,可在5000次循环中保持100%的容量。此外,组装好的VOH-rG // Zn柔性准固态电池也具有令人印象深刻的性能。这种超高效的原位自转化策略将为探索有前途的电极材料用于高级能量存储铺平新的途径。

更新日期:2020-11-17
down
wechat
bug