当前位置: X-MOL 学术Inform. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiple Kernel Low-Rank Representation-based Robust Multi-view Subspace Clustering
Information Sciences Pub Date : 2020-11-12 , DOI: 10.1016/j.ins.2020.10.059
Xiaoqian Zhang , Zhenwen Ren , Huaijiang Sun , Keqiang Bai , Xinghua Feng , Zhigui Liu

Owing to the presence of complex noise, it is extremely challenging to learn a low-dimensional subspace structure directly from the original data. In addition, the nonlinear structure of the data makes multi-view subspace clustering more difficult. In this paper, we propose a multiple kernel low-rank representation-based robust multi-view subspace clustering method (MKLR-RMSC) that combines a learnable low-rank multiple kernel trick with co-regularization. MKLR-RMSC mainly conducts the following four tasks: 1) fully mining the complementary information provided by the different views in the feature spaces, 2) the containment of multiple low-dimensional subspaces in the feature space data, 3) allowing all view-specific representations towards a common centroid, and 4) effectively dealing with non-Gaussian noise in data. In our model, the weighted Schatten p-norm is applied to fully explore the effects of different ranks while approaching the original low-rank hypothesis. Moreover, different predefined learning kernel matrices are designed for different views, which is more conducive to mining the unique and complementary information of different views. In addition, as a robust measure, correntropy is applied in MKLR-RMSC. Our method is more effective and robust than several of the most advanced methods on six commonly used datasets.



中文翻译:

基于多核低秩表示的鲁棒多视图子空间聚类

由于存在复杂的噪声,直接从原始数据中学习低维子空间结构非常具有挑战性。此外,数据的非线性结构使多视图子空间聚类更加困难。在本文中,我们提出了一种基于多核低秩表示的鲁棒多视图子空间聚类方法(MKLR-RMSC),该方法将可学习的低秩多核技巧与协规则化相结合。MKLR-RMSC主要执行以下四个任务:1)充分挖掘特征空间中不同视图提供的补充信息,2)在特征空间数据中包含多个低维子空间,3)允许所有特定于视图的4)有效处理数据中的非高斯噪声。在我们的模型中在接近原始的低秩假设的同时,应用p -norm来充分探索不同秩的影响。此外,针对不同的视图设计了不同的预定义学习内核矩阵,这更有利于挖掘不同视图的唯一且互补的信息。另外,作为一种可靠的措施,在MKLR-RMSC中应用了熵。与六个常用数据集上的几种最先进的方法相比,我们的方法更加有效和健壮。

更新日期:2020-11-12
down
wechat
bug