当前位置: X-MOL 学术Catal. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review on dry reforming of methane over perovskite derived catalysts
Catalysis Today ( IF 5.2 ) Pub Date : 2020-11-12 , DOI: 10.1016/j.cattod.2020.10.041
Srikar Bhattar , Md. Ashraful Abedin , Swarom Kanitkar , James J. Spivey

Dry reforming of methane (DRM) is widely studied as one of the potential routes for syngas production from two greenhouse gases (CH4 & CO2) and can reduce the net emission of these gases if the energy used for it is derived from non-hydrocarbon source. Many conventional metal/support catalyst systems, though are highly active, deactivate within few hours due to surface coke deposition or sintering of the active metal clusters. In order to overcome these challenges and withstand the extreme operating temperatures of DRM, active metals can be incorporated into crystalline oxides like perovskites, pyrochlores, hydrotalcites and hexaaluminates. These metal-containing oxides, once the active metal is reduced, produce a highly dispersed active catalyst.

This review emphasizes the application of perovskite-derived catalysts in dry reforming of methane. Perovskites are crystalline oxides with general formula of ABO3, where A is generally a rare earth, alkaline earth or alkali metal cation while B is a transition metal cation. The exsolution process involved in the reduction of perovskite catalysts produces smaller size metal particles which in turn dictate the superior catalytic performance of these materials. Preparation methods, “A” and/or “B” site partial substitutions and additional use of high surface area supports (like mesoporous silicates and basic oxides) for dispersing perovskite catalysts, greatly influence the physicochemical and catalytic behavior of these perovskite derived catalysts. “A” site substitutions generally enhance the oxygen mobility in the perovskite structure by generating oxygen vacancies which suppress the carbon deposition, while bimetallic synergistic effects are produced by addition of a second metal at the “B” site which tend to increase the activity and stability of these catalysts. This review also includes a detailed discussion on the mechanism of DRM in perovskite derived catalysts.



中文翻译:

钙钛矿衍生催化剂上甲烷干重整研究综述

甲烷的干重整(DRM)被广泛研究为从两种温室气体(CH 4和CO 2)生产合成气的潜在途径之一,如果用于甲烷的能量来自非甲烷,则可以减少这些气体的净排放。烃源。许多传统的金属/载体催化剂体系虽然具有高活性,但由于表面焦炭沉积或活性金属簇的烧结而在数小时内失活。为了克服这些挑战并承受DRM的极端工作温度,可以将活性金属掺入晶体氧化物,如钙钛矿,烧绿石,水滑石和六铝酸盐。一旦活性金属被还原,这些含金属的氧化物就产生高度分散的活性催化剂。

这篇综述强调了钙钛矿衍生的催化剂在甲烷干重整中的应用。钙钛矿是通式为ABO 3的结晶氧化物,其中A通常是稀土,碱土或碱金属阳离子,而B是过渡金属阳离子。涉及钙钛矿催化剂还原的析出过程产生较小尺寸的金属颗粒,这又决定了这些材料的优异催化性能。制备方法,“ A”和/或“ B”位点部分取代以及高表面积载体(如中孔硅酸盐和碱性氧化物)用于分散钙钛矿催化剂的额外使用,极大地影响了这些钙钛矿衍生催化剂的物理化学和催化性能。“ A”位取代通常会通过产生抑制碳沉积的氧空位来增强钙钛矿结构中的氧迁移率,而通过在“ B”位添加第二种金属产生双金属协同效应,这往往会增加这些催化剂的活性和稳定性。这篇综述还包括了有关钙钛矿衍生催化剂中DRM机理的详细讨论。

更新日期:2020-11-12
down
wechat
bug