当前位置: X-MOL 学术Org. Geochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pyrolysis of 1-methylnaphthalene involving water: Effects of Fe-bearing minerals on the generation, C- and H-isotope fractionation of methane from H2O-hydrocarbon reaction
Organic Geochemistry ( IF 3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.orggeochem.2020.104151
Kun He , Shuichang Zhang , Xiaomei Wang , Jingkui Mi , Wenjun Zhang , Jinhao Guo , Wenlong Zhang

Abstract Water (H2O) and minerals involved organic-inorganic reactions are critical for hydrocarbon evolution in sedimentary basins and deep in the Earth. The mechanism and isotope fractionation for H2O-mineral-hydrocarbon interactions remain unclear. In this study, isothermal pyrolysis of 1-methylnaphthalene (1-MNa) involving H2O and three Fe-bearing minerals (pyrite–FeS2, magnetite–Fe3O4, and siderite–FeCO3), was conducted using a gold-tube system at 330–400 °C and a pressure of 50 MPa. It was observed that the presence of FeS2 and Fe3O4 led to an increase in the yield of hydrocarbon gases (C1-5). The isomeric ratios (iC4/nC4 and iC5/nC5) were much higher in the presence of Fe-minerals. In addition, 13C of methane (CH4) in pyrolysis with H2O-FeS2 and H2O-Fe3O4 was evidently more depleted than that in pyrolysis with only water. Kinetic calculations and carbon isotope fractionation revealed that FeS2 and Fe3O4 enhanced the H2O-hydrocarbon reaction via either ionic or free radical mechanisms at elevated temperatures. Moreover, the presence of FeS2 and Fe3O4 promoted hydrogen (H) transfer from H2O, causing the enrichment in the 2H of CH4. Furthermore, we first established a correlation between the H transfer rate constant (kH) and temperature (T): ln kH = -27.545 × 1000/T + 27.077. On this basis, it can be deduced that the time needed for equilibrium H transfer from H2O to CH4 at 200 °C and 400 °C with Fe-bearing minerals is approximately 4.8 Ma and 54.4 d, respectively.

中文翻译:

1-甲基萘与水的热解:含铁矿物对H2O-烃反应甲烷生成、C-和H-同位素分馏的影响

摘要 涉及有机-无机反应的水 (H2O) 和矿物质对于沉积盆地和地球深处的油气演化至关重要。H2O-矿物-烃相互作用的机制和同位素分馏仍不清楚。在这项研究中,1-甲基萘 (1-MNa) 的等温热解涉及 H2O 和三种含铁矿物(黄铁矿-FeS2、磁铁矿-Fe3O4 和菱铁矿-FeCO3),使用金管系统在 330-400 °C 和 50 MPa 的压力。据观察,FeS2 和 Fe3O4 的存在导致烃类气体 (C1-5) 的产率增加。在铁矿物存在下,异构体比率(iC4/nC4 和 iC5/nC5)要高得多。此外,H2O-FeS2 和 H2O-Fe3O4 热解中的 13C 甲烷 (CH4) 明显比仅用水热解时消耗得更多。动力学计算和碳同位素分馏表明,FeS2 和 Fe3O4 在升高的温度下通过离子或自由基机制增强了 H2O-烃反应。此外,FeS2 和 Fe3O4 的存在促进了 H2O 中的氢 (H) 转移,导致 CH4 的 2H 富集。此外,我们首先建立了 H 传输速率常数 (kH) 和温度 (T) 之间的相关性:ln kH = -27.545 × 1000/T + 27.077。在此基础上,可以推导出含铁矿物在 200 °C 和 400 °C 下从 H2O 到 CH4 的平衡 H 转移所需的时间分别约为 4.8 Ma 和 54.4 d。FeS2 和 Fe3O4 的存在促进了 H2O 中的氢 (H) 转移,导致 CH4 的 2H 富集。此外,我们首先建立了 H 传输速率常数 (kH) 和温度 (T) 之间的相关性:ln kH = -27.545 × 1000/T + 27.077。在此基础上,可以推导出含铁矿物在 200 °C 和 400 °C 下从 H2O 到 CH4 的平衡 H 转移所需的时间分别约为 4.8 Ma 和 54.4 d。FeS2 和 Fe3O4 的存在促进了 H2O 中的氢 (H) 转移,导致 CH4 的 2H 富集。此外,我们首先建立了 H 传输速率常数 (kH) 和温度 (T) 之间的相关性:ln kH = -27.545 × 1000/T + 27.077。在此基础上,可以推导出含铁矿物在 200 °C 和 400 °C 下从 H2O 到 CH4 的平衡 H 转移所需的时间分别约为 4.8 Ma 和 54.4 d。
更新日期:2020-11-01
down
wechat
bug