当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable Li/S electrocatalytic behavior
Nano Energy ( IF 16.8 ) Pub Date : 2020-11-11 , DOI: 10.1016/j.nanoen.2020.105602
Daorui Wang , Dan Luo , Yongguang Zhang , Yan Zhao , Guofu Zhou , Lingling Shui , Zhongwei Chen , Xin Wang

Lithium/sulfur (Li/S) batteries have superior advantages in their high energy-density and environmental benignity. However, the notorious shuttle effect of lithium polysulfides (LiPSs) and their sluggish redox reaction kinetics hinder their practical implementation. Herein, a electronic modulation strategy was developed to regulate the catalytic behavior of transition metal oxides (TMOs)/transition metal phosphates (TMPs) interface towards Li/S surface chemistry. Thus, the reduced energy gap between the energy centers of the cation 3d and anion 2p band in O-M-P bridging (M refers to the transition elements) effectively reduce the energy barrier of LiPSs conversion and improve the electron transfer owing to the interdoping effect, which further functions as catalytic centers to active the M sites for regulating LiPSs adsorption-diffusion-conversion process. Benefited from these structural advantages, the engineered TMOs/TMPs exhibits admirable electrocatalytic sulfur reaction kinetics based on theoretical calculations and electrochemical analyzations. As expected, the TMOs/TMPs sulfur cathode exhibits an ultralow capacity fading rate of 0.033% per cycle at 1C over 500 cycles. Even under raising sulfur loadings and lean electrolyte content, this cathode still exhibits outstanding electrochemical performance.



中文翻译:

从原子水平上解译过渡金属氧化物/磷酸盐的互穿界面以实现可靠的Li / S电催化行为

锂/硫(Li / S)电池在高能量密度和环境友好性方面具有优越的优势。然而,多硫化锂(LiPS)臭名昭著的穿梭效应及其缓慢的氧化还原反应动力学阻碍了其实际应用。本文中,开发了一种电子调节策略来调节过渡金属氧化物(TMO)/过渡金属磷酸盐(TMP)界面对Li / S表面化学的催化行为。因此,在OMP桥接中,阳离子3d和阴离子2p能带之间的能隙减小(M表示过渡元素),有效降低了LiPSs转换的能垒,并由于相互掺杂效应而改善了电子转移,它进一步充当催化中心,以激活M位来调节LiPS的吸附-扩散-转化过程。得益于这些结构优势,经过设计的TMO / TMP在理论计算和电化学分析的基础上展现出令人赞叹的电催化硫反应动力学。正如预期的那样,TMO / TMPs硫阴极在500个循环中于1C时每循环具有0.033%的超低容量衰减率。即使在增加硫负荷和稀薄的电解质含量的情况下,该阴极仍表现出出色的电化学性能。TMO / TMPs硫阴极在500个循环中于1C时每循环具有0.033%的超低容量衰减率。即使在增加硫负荷和稀薄的电解质含量的情况下,该阴极仍表现出出色的电化学性能。TMO / TMPs硫阴极在500个循环中于1C时每循环具有0.033%的超低容量衰减率。即使在增加硫负荷和稀薄的电解质含量的情况下,该阴极仍表现出出色的电化学性能。

更新日期:2020-12-01
down
wechat
bug