当前位置: X-MOL 学术J. Ind. Eng. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facilitation of the thermochemical mechanism in NiO-based resistive switching memories via tip-enhanced electric fields
Journal of Industrial and Engineering Chemistry ( IF 6.1 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.jiec.2020.10.041
Han-Hyeong Choi , Sung Hoon Paik , Youngjin Kim , Minsung Kim , Yong Soo Kang , Sang-Soo Lee , Jae Young Jho , Jong Hyuk Park

Abstract Transition metal oxides have attracted considerable attention as a switching material for resistive random access memory (RRAM) based on the thermochemical mechanism (TCM). However, the heat energy required for resistance switching is applied to the entire area of the RRAM without position selectivity, causing random growth of conductive filaments (CFs) and degrading device performance. This study showed that structured electrodes can promote the TCM in nickel oxide (NiO)-based RRAM by enhancing the electric field within the switching material and controlling Joule heat generation locally. Pyramid-structured electrodes with an extremely sharp tip prepared by the template-stripping method achieve an electric field in the tip region that is ∼5 times larger than that of conventional planar electrodes. The tip-enhanced electric field can induce a local temperature rise, which facilitates the TCM for nucleation and CF growth. The resulting RRAMs exhibit low and reliable forming, SET and RESET voltages (1.96 ± 0.14 V, 1.44 ± 0.12 V, and 0.64 ± 0.05 V, respectively). Moreover, their retention time and resistance ratio (RHRS/RLRS) are greatly improved, by 10 and 102 times, respectively, compared to planar devices. This approach can achieve position selectivity in TCM-based resistance switching, and could lead to the development of high-performance RRAM.

中文翻译:

通过尖端增强电场促进基于 NiO 的电阻开关存储器中的热化学机制

摘要 过渡金属氧化物作为基于热化学机制(TCM)的电阻式随机存取存储器(RRAM)的开关材料引起了广泛关注。然而,电阻切换所需的热能被施加到 RRAM 的整个区域而没有位置选择性,导致导电细丝 (CF) 的随机生长并降低器件性能。该研究表明,结构化电极可以通过增强开关材料内的电场和局部控制焦耳热的产生来促进基于氧化镍 (NiO) 的 RRAM 中的 TCM。通过模板剥离方法制备的具有极尖尖端的金字塔结构电极在尖端区域实现了比传统平面电极大 5 倍的电场。尖端增强电场可以引起局部温度升高,这有利于 TCM 成核和 CF 生长。由此产生的 RRAM 表现出低且可靠的成形、SET 和 RESET 电压(分别为 1.96 ± 0.14 V、1.44 ± 0.12 V 和 0.64 ± 0.05 V)。此外,与平面器件相比,它们的保留时间和电阻比 (RHRS/RLRS) 分别提高了 10 倍和 102 倍。这种方法可以在基于 TCM 的电阻切换中实现位置选择性,并可能导致高性能 RRAM 的发展。与平面器件相比,它们的保留时间和电阻比 (RHRS/RLRS) 分别提高了 10 倍和 102 倍。这种方法可以在基于 TCM 的电阻切换中实现位置选择性,并可能导致高性能 RRAM 的发展。与平面器件相比,它们的保留时间和电阻比 (RHRS/RLRS) 分别提高了 10 倍和 102 倍。这种方法可以在基于 TCM 的电阻切换中实现位置选择性,并可能导致高性能 RRAM 的发展。
更新日期:2021-02-01
down
wechat
bug