当前位置: X-MOL 学术J. Phys. D: Appl. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Broadband diffraction-free on-chip propagation along hybrid metallic grating metasurfaces in the visible frequency
Journal of Physics D: Applied Physics ( IF 3.1 ) Pub Date : 2020-11-10 , DOI: 10.1088/1361-6463/abbfc6
Yangyang Shi , Rui Yang , Chenjie Dai , Chengwei Wan , Shuai Wan , Zhongyang Li

Metallic patterned metasurfaces can effectively manipulate the propagation of surface plasmonic waves in the near-field regime. Extraordinary optical phenomena such as diffraction-free propagation also have been enabled by periodic uniform metallic grating metasurfaces (UMGM). However, such metallic patterned metasurfaces usually exhibit a relatively narrow-band non-diffractive property and the realization of visible-frequency broadband diffraction-free on-chip propagation has been quite challenging due to intensive structural dispersive and sensitive wavelength selectivity. Here, we proposed a novel design of a hybrid metallic grating metasurface (HMGM) with two different ridge widths, which could display a broadband diffraction-free on-chip propagation in the visible frequency. By optimization and appropriate hybridization of the ridges of different widths, it enables effective modication of the dispersion of surface plasmons, thus forming the broadband diffraction-free characteristics. Compared to the UMGM, our proposed HMGM can facilitate enhanced propagation of the surface plasmon polaritons and strongly confine the surface plasmonic field to the deep-subwavelength scale. With such hybrid implementation, the surface plasmonic waves propagate parallel to the ridges and their wavefronts remain the original shape without diverging at the broadband wavelength of 600 nm–800 nm. Overall, such broadband diffraction-free propagation along the HMGM could find many potential applications in on-chip plasmonic devices including sub-diffraction resolution imaging, hyperlenses, and photon routing, etc.



中文翻译:

沿混合金属光栅超表面在可见频率范围内的无宽带衍射的片上传播

金属图案化的超表面可以有效地控制表面等离子体波在近场状态下的传播。周期性均匀的金属光栅超表面(UMGM)也实现了非衍射传播等非凡的光学现象。然而,这种金属图案化的超表面通常表现出相对窄带的非衍射性质,并且由于强烈的结构色散和敏感的波长选择性,实现无可见频率宽带无衍射的芯片上传播已经非常具有挑战性。在这里,我们提出了一种新颖的混合金属光栅超表面(HMGM)的设计,该表面具有两个不同的脊宽,可以在可见频率下显示宽带无衍射的片上传播。通过对不同宽度的脊进行优化和适当的杂交,可以有效地控制表面等离激元的分散,从而形成宽带无衍射特性。与UMGM相比,我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总体而言,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。它能够有效地控制表面等离激元的分散,从而形成宽带无衍射特性。与UMGM相比,我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总体而言,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。它能够有效地控制表面等离激元的分散,从而形成宽带无衍射特性。与UMGM相比,我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总体而言,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。从而形成宽带无衍射特性。与UMGM相比,我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总体而言,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。从而形成宽带无衍射特性。与UMGM相比,我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总的来说,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总体而言,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。我们提出的HMGM可以促进表面等离激元极化子的增强传播,并将表面等离激元场严格限制在深亚波长范围内。通过这种混合实现,表面等离激元波平行于脊线传播,并且它们的波前保持原始形状,而不会在600 nm–800 nm的宽带波长处发散。总的来说,这种沿HMGM的宽带无衍射传播可以在片上等离子设备中找到许多潜在的应用,包括亚衍射分辨率成像,超透镜和光子路由等。

更新日期:2020-11-10
down
wechat
bug