当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distribution of Interplanetary Dust Detected by the Juno Spacecraft and Its Contribution to the Zodiacal Light
Journal of Geophysical Research: Planets ( IF 3.9 ) Pub Date : 2020-11-11 , DOI: 10.1029/2020je006509
J. L. Jorgensen 1 , M. Benn 1 , J. E. P. Connerney 2, 3 , T. Denver 1 , P. S. Jorgensen 1 , A. C. Andersen 4 , S. J. Bolton 5
Affiliation  

The Solar System is home to a cloud of dust that orbits the Sun and makes its presence known by virtue of scattered light (Zodiacal Light) that can be seen after dusk and before dawn. Within this cloud are bands of dust orbiting near the ecliptic plane, evidenced by an excess of scattered light at discrete ecliptic latitudes. Dedicated dust detectors borne by spacecraft in transit of the solar system have detected few such particles of the appropriate size owing to limited detector aperture and sparsity of the population. Thus, the distribution, origin, and orbital evolution of the dust in these bands remains a mystery. A star camera aboard the Juno spacecraft traveling from Earth to Jupiter recorded interplanetary dust impacts on the spacecraft in numbers sufficient to characterize the spatial distribution of such particles for the first time. The observed distribution is consistent with a primary source of dust particles sharing the Mars orbit plane between Earth and the 4:1 resonance with Jupiter. We propose that the primary distribution is scattered by orbital resonances with Jupiter via the Kozai‐Lidov (KL) effect into a secondary population at higher inclination to the ecliptic. The measured dust distribution, occupying a volume uniquely determined by the orbital elements of Mars and KL scattering, accounts for the observed variation of the Zodiacal Light with ecliptic latitude. Our results provide a compelling alternative to the prevailing theory of the origin and evolution of interplanetary dust observed at low ecliptic latitudes.

中文翻译:

朱诺航天器探测到的行星际尘埃的分布及其对黄道光的贡献

太阳系是尘埃云的家园,尘埃云环绕太阳运行,并借助散射光(黄道光)使它的存在众所周知,该散射光可以在黄昏之后和黎明之前看到。在这朵云中,黄道附近的尘埃带绕轨道运行,在离散的黄道纬度上有大量的散射光证明了这一点。由于有限的探测器孔径和稀疏性,由航天器携带的专用尘埃探测器在太阳系传输过程中几乎没有检测到适当大小的此类颗粒。因此,这些带中尘埃的分布,起源和轨道演变仍然是一个谜。从地球到木星的朱诺号航天器上的星型摄像机记录了行星际尘埃对航天器的撞击,其数量足以首次表征此类粒子的空间分布。观测到的分布与尘埃的主要来源相一致,尘埃的主要来源是在地球与木星的4:1共振之间共享火星轨道平面。我们认为,主要分布是通过木星通过Kozai-Lidov(KL)效应与木星的轨道共振而分散的,形成了一个向黄道倾斜度更高的次生种群。测得的粉尘分布占据了一个由火星和KL散射的轨道元素唯一确定的体积,这说明了黄道带观测到的黄道纬度变化。我们的研究结果为在低黄纬地区观测到的星际尘埃起源和演化的流行理论提供了一种有说服力的替代方法。与木星共鸣1次。我们认为,主要分布是通过木星通过Kozai-Lidov(KL)效应与木星的轨道共振而分散的,形成了一个向黄道倾斜度更高的次生种群。测得的粉尘分布占据了一个由火星和KL散射的轨道元素唯一确定的体积,这说明了黄道带观测到的黄道纬度变化。我们的研究结果为在低黄纬地区观测到的星际尘埃起源和演化的流行理论提供了一种有说服力的替代方法。与木星共鸣1次。我们认为,主要分布是通过木星通过Kozai-Lidov(KL)效应与木星的轨道共振而分散的,形成了一个向黄道倾斜度更高的次生种群。测得的粉尘分布占据了一个由火星和KL散射的轨道元素唯一确定的体积,这说明了黄道带观测到的黄道纬度变化。我们的结果提供了一种有说服力的替代方法,可以替代低黄纬地区观测到的星际尘埃起源和演化的流行理论。占据由火星和KL散射的轨道元素唯一确定的体积的原因是黄道纬度的黄道带观测到的变化。我们的结果提供了一种有说服力的替代方法,可以替代低黄纬地区观测到的星际尘埃起源和演化的流行理论。占据由火星和KL散射的轨道元素唯一确定的体积的原因是黄道纬度的黄道带观测到的变化。我们的研究结果为在低黄纬地区观测到的星际尘埃起源和演化的流行理论提供了一种有说服力的替代方法。
更新日期:2020-11-11
down
wechat
bug