当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical regression framework for multi-fidelity modeling
Knowledge-Based Systems ( IF 7.2 ) Pub Date : 2020-11-10 , DOI: 10.1016/j.knosys.2020.106587
Yueqi Xu , Xueguan Song , Chao Zhang

High-fidelity (HF) samples are accurate but are obtained at high cost, and low-fidelity (LF) samples are widely available but provide rough approximations. Multi-fidelity modeling aims to incorporate massive LF samples with a small amount of HF samples to develop a model for accurately approximating the HF responses to unseen inputs. In this paper, we propose a hierarchical regression framework for multi-fidelity modeling that includes a hierarchical regressor for bi-fidelity modeling and a recursive method for multi-fidelity modeling. Specifically, the hierarchical regressor for bi-fidelity modeling is composed of four modules: (1) the low-fidelity (LF) module explores the LF characteristics of the input; (2) the data concatenation (DC) module concatenates the output of the LF module with the input to form a vector; (3) the dimension reduction (DR) module reduces the dimension of the vector; and (4) the high-fidelity (HF) module provides the HF response of the input. The recursive method extends the resulting bi-fidelity model to the multi-fidelity case in an iterative way, where the HF information propagates to the samples at the relatively lower-fidelity levels to update their responses and the bi-fidelity models are then built based on the updated sample sets. The experimental results validate the proposed framework and show that the multi-fidelity models developed under the regression framework not only outperform the state-of-the-art models but also have a high robustness for varying sizes of HF and LF training samples, especially for very few HF samples. In addition, the algorithms (e.g., regression and DR) used in the framework can be freely changed to those appropriate to the application requirements, and thus, the proposed framework has a good applicability in practice.



中文翻译:

多保真度建模的层次回归框架

高保真(HF)样本是准确的,但价格高昂,而低保真(LF)样本则可广泛获得,但可以提供近似的近似值。多保真度建模的目的是将大量的LF样本与少量的HF样本合并在一起,以开发出一种模型,以准确地近似HF对看不见的输入的响应。在本文中,我们提出了一种用于多保真度建模的层次回归框架,其中包括用于双保真度建模的层次回归器和用于多保真度建模的递归方法。具体来说,用于双保真度建模的分层回归器由四个模块组成:(1)低保真度(LF)模块探索输入的LF特性;(2)数据级联(DC)模块将LF模块的输出与输入级联以形成矢量;(3)降维(DR)模块减小向量的维数;(4)高保真(HF)模块提供输入的HF响应。递归方法以迭代方式将生成的双保真度模型扩展到多保真度情况,其中HF信息以相对较低保真度的水平传播到样本以更新其响应,然后基于该模型建立双保真度模型。在更新的样本集上。实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法((4)高保真(HF)模块提供输入的HF响应。递归方法以迭代方式将生成的双保真度模型扩展到多保真度情况,其中HF信息以相对较低保真度的水平传播到样本以更新其响应,然后基于该模型建立双保真度模型。在更新的样本集上。实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法((4)高保真(HF)模块提供输入的HF响应。递归方法以迭代方式将生成的双保真度模型扩展到多保真度情况,其中HF信息以相对较低保真度的水平传播到样本以更新其响应,然后基于该模型建立双保真度模型。在更新的样本集上。实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法(递归方法以迭代方式将生成的双保真度模型扩展到多保真度情况,其中HF信息以相对较低保真度的水平传播到样本以更新其响应,然后基于该模型建立双保真度模型。在更新的样本集上。实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法(递归方法以迭代方式将生成的双保真度模型扩展到多保真度情况,其中HF信息以相对较低保真度的水平传播到样本以更新其响应,然后基于该模型建立双保真度模型。在更新的样本集上。实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法(实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法(实验结果验证了所提出的框架,并表明在回归框架下开发的多保真度模型不仅优于最新模型,而且对于不同大小的HF和LF训练样本(特别是对于很少的HF样品。此外,算法(可以自由地将框架中使用的(例如回归和DR)更改为适合应用程序需求的框架,因此,所提出的框架在实践中具有良好的适用性。

更新日期:2020-11-12
down
wechat
bug