当前位置: X-MOL 学术J. Biotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing High-throughput Phenotyping and Genotyping for Enhanced Drought Tolerance in Crop Plants
Journal of Biotechnology ( IF 4.1 ) Pub Date : 2020-11-10 , DOI: 10.1016/j.jbiotec.2020.11.010
Javaid Akhter Bhat 1 , Rupesh Deshmukh 2 , Tuanjie Zhao 1 , Gunvant Patil 3 , Amit Deokar 4 , Suhas Shinde 5 , Juhi Chaudhary 6
Affiliation  

Development of drought-tolerant cultivars is one of the challenging tasks for the plant breeders due to its complex inheritance and polygenic regulation. Evaluating genetic material for drought tolerance is a complex process due to its spatiotemporal interactions with environmental factors. The conventional breeding approaches are costly, lengthy, and inefficient to achieve the expected gain in drought tolerance. In this regard, genomics-assisted breeding (GAB) offers promise to develop cultivars with improved drought tolerance in a more efficient, quicker, and cost-effective manner. The success of GAB depends upon the precision in marker-trait association and estimation of genomic estimated breeding values (GEBVs), which mostly depends on coverage and precision of genotyping and phenotyping. A wide gap between the discovery and practical use of quantitative trait loci (QTL) for crop improvement has been observed for many important agronomical traits. Such a limitation could be due to the low accuracy in QTL detection, mainly resulting from low marker density and manually collected phenotypes of complex agronomic traits. Increasing marker density using the high-throughput genotyping (HTG), and accurate and precise phenotyping using high-throughput digital phenotyping (HTP) platforms can improve the precision and power of QTL detection. Therefore, both HTG and HTP can enhance the practical utility of GAB along with a faster characterization of germplasm and breeding material. In the present review, we discussed how the recent innovations in HTG and HTP would assist in the breeding of improved drought-tolerant varieties. We have also discussed strategies, tools, and analytical advances made on the HTG and HTP along with their pros and cons.



中文翻译:

利用高通量表型和基因分型提高作物的耐旱性

由于其复杂的遗传和多基因调控,耐旱品种的开发是植物育种者面临的一项具有挑战性的任务。由于遗传材料与环境因素的时空相互作用,评估其耐旱性的遗传材料是一个复杂的过程。传统的育种方法成本高、耗时长且效率低,无法实现预期的耐旱性增益。在这方面,基因组学辅助育种 (GAB) 有望以更有效、更快和更具成本效益的方式开发具有更高耐旱性的栽培品种。GAB 的成功取决于标记-性状关联的精确度和基因组估计育种值 (GEBV) 的估计,这主要取决于基因分型和表型的覆盖范围和精确度。对于许多重要的农艺性状,已经观察到数量性状基因座 (QTL) 用于作物改良的发现和实际应用之间存在巨大差距。这种限制可能是由于 QTL 检测的准确性低,主要是由于标记密度低和手动收集复杂农艺性状的表型。使用高通量基因分型 (HTG) 增加标记密度,以及使用高通量数字表型 (HTP) 平台进行准确和精确的表型分析,可以提高 QTL 检测的精度和能力。因此,HTG 和 HTP 都可以提高 GAB 的实际效用以及更快地表征种质和育种材料。在本综述中,我们讨论了 HTG 和 HTP 的最新创新将如何帮助培育改良的耐旱品种。

更新日期:2020-11-21
down
wechat
bug