当前位置: X-MOL 学术Oxid. Met. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Cyclic Hot Corrosion Behavior of Pt–Al–7%YSZ Coating
Oxidation of Metals ( IF 2.1 ) Pub Date : 2020-11-09 , DOI: 10.1007/s11085-020-10006-7
Arman Rabieifar , Said Nategh , M. Reza Afshar , Hamidreza Najafi

In this study, the microstructure and cyclic oxidation of Pt–Al–7%YSZ thermal barrier coating applied on Rene-80 superalloy were investigated after Type I hot corrosion. The field emission scanning electron microscope and X-ray diffraction were used to evaluate the microstructure and phase identification, respectively. Na2SO4 was added to the surface of the coating for hot corrosion tests. The tests were carried out by the repeated cycles of heating at 900 °C for 30 and 60 min and rapid cooling to 400 °C in 10 min. Before the cyclic hot corrosion test, the specimens were coated with the platinum electroplating, high-activity low-temperature aluminizing, and the thermal spray of 7% yttria-stabilized zirconia (YSZ), respectively. The results showed that the cyclic hot corrosion mechanisms were the basic fluxing of primary thermally grown oxide (TGO), the formation of chromia, spinel and nickel oxides (C.S.N oxides) and Ni–Cr perovskites on the oxide scale. The type I cyclic hot corrosion resistance of Pt–Al–7%YSZ coating decreased with the number of thermal cycles due to a decrease in Al, an increase in Cr concentration, and increase in the volume fraction of C.S.N oxides and Ni–Cr perovskites in the oxide scale. As the number of thermal cycles increased, the oxide scale growth stresses and thermal mismatch stresses increased, leading to TBC degradation by the rumpling and ratcheting mechanisms in the Pt–Al/TGO interface. However, in lower thermal cycles, internal hot corrosion, and the formation of Kirkendall pores at the substrate/Pt–Al interface caused TBC degradation.

中文翻译:

Pt-Al-7%YSZ涂层的循环热腐蚀行为

在这项研究中,研究了应用在 Rene-80 高温合金上的 Pt-Al-7%YSZ 热障涂层在 I 型热腐蚀后的微观结构和循环氧化。分别采用场发射扫描电子显微镜和X射线衍射对微观结构和物相鉴定进行评价。将 Na2SO4 添加到涂层表面进行热腐蚀测试。通过在 900 °C 下加热 30 和 60 分钟并在 10 分钟内快速冷却至 400 °C 的重复循环进行测试。在循环热腐蚀试验前,试样分别进行电镀铂、高活性低温渗铝和7%氧化钇稳定氧化锆(YSZ)热喷涂。结果表明,循环热腐蚀机制是初级热生长氧化物 (TGO) 的基本助熔剂,在氧化皮上形成氧化铬、尖晶石和镍氧化物(CSN 氧化物)和 Ni-Cr 钙钛矿。由于Al的减少、Cr浓度的增加以及CSN氧化物和Ni-Cr钙钛矿的体积分数的增加,Pt-Al-7%YSZ涂层的I型循环热腐蚀性能随着热循环次数的增加而降低在氧化皮中。随着热循环次数的增加,氧化皮生长应力和热失配应力增加,通过 Pt-Al/TGO 界面中的起皱和棘轮机制导致 TBC 降解。然而,在较低的热循环中,内部热腐蚀和基体/Pt-Al 界面处柯肯德尔孔的形成导致 TBC 降解。由于Al的减少、Cr浓度的增加以及CSN氧化物和Ni-Cr钙钛矿的体积分数的增加,Pt-Al-7%YSZ涂层的I型循环热腐蚀性能随着热循环次数的增加而降低在氧化皮中。随着热循环次数的增加,氧化皮生长应力和热失配应力增加,通过 Pt-Al/TGO 界面中的起皱和棘轮机制导致 TBC 降解。然而,在较低的热循环中,内部热腐蚀和基体/Pt-Al 界面处柯肯德尔孔的形成导致 TBC 降解。由于Al的减少、Cr浓度的增加以及CSN氧化物和Ni-Cr钙钛矿的体积分数的增加,Pt-Al-7%YSZ涂层的I型循环热腐蚀性能随着热循环次数的增加而降低在氧化皮中。随着热循环次数的增加,氧化皮生长应力和热失配应力增加,通过 Pt-Al/TGO 界面中的起皱和棘轮机制导致 TBC 降解。然而,在较低的热循环中,内部热腐蚀和基体/Pt-Al 界面处柯肯德尔孔的形成导致 TBC 降解。氧化皮中的 N 氧化物和 Ni-Cr 钙钛矿。随着热循环次数的增加,氧化皮生长应力和热失配应力增加,通过 Pt-Al/TGO 界面中的起皱和棘轮机制导致 TBC 降解。然而,在较低的热循环中,内部热腐蚀和基体/Pt-Al 界面处柯肯德尔孔的形成导致 TBC 降解。氧化皮中的 N 氧化物和 Ni-Cr 钙钛矿。随着热循环次数的增加,氧化皮生长应力和热失配应力增加,通过 Pt-Al/TGO 界面中的起皱和棘轮机制导致 TBC 降解。然而,在较低的热循环中,内部热腐蚀和基体/Pt-Al 界面处柯肯德尔孔的形成导致 TBC 降解。
更新日期:2020-11-09
down
wechat
bug