当前位置: X-MOL 学术Metallurgist › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy-Efficient Cooling and Hydraulic Descaling Systems
Metallurgist ( IF 0.8 ) Pub Date : 2020-11-01 , DOI: 10.1007/s11015-020-01050-4
M. Pohanka , P. Kotrbacek , E. Bartuli , M. Raudensky

Determination of real boundary cooling conditions is a fundamental requirement for numerical models and simulations to optimize and control selected processes in metallurgy. To obtain these boundary conditions, a special method has been developed. The input temperature history of cooling is obtained from experiments. The measured data are then mathematically evaluated. Realistic boundary conditions, as the heat transfer coefficient between hot surface and the coolant, allow optimization of the cooling sections and the design of their configurations. To realize the cooling test, unique laboratory equipment was developed. It allows setting of cooling conditions close to the plant conditions. The paper presents examples of optimization of work roll cooling, examples of design of sections for in-line heat treatment of metals and procedure for designing new high-pressure descaling sections. The methodology proposed by the Heat Transfer and Fluid Flow Laboratory of the Brno University of Technology is typically used to determine the heat-transfer coefficient on the surface of high-temperature material in the applications of heat treatment, cooling of rolls of hot rolling mills, and high- pressure descaling. The methodology enables identifying the effect of nozzle water jets on the heat-transfer coefficient or on removal of high-temperature scale and leads to cooling and descaling optimization for industrial partners.

中文翻译:

节能冷却和液压除垢系统

确定真实的边界冷却条件是优化和控制冶金中选定过程的数值模型和模拟的基本要求。为了获得这些边界条件,开发了一种特殊的方法。冷却的输入温度历史是从实验中获得的。然后对测量数据进行数学评估。现实的边界条件,作为热表面和冷却剂之间的传热系数,允许优化冷却部分及其配置的设计。为了实现冷却测试,开发了独特的实验室设备。它允许设置接近工厂条件的冷却条件。本文介绍了工作辊冷却优化的示例,金属在线热处理部分的设计示例以及新的高压除鳞部分的设计程序。布尔诺理工大学传热与流体流动实验室提出的方法通常用于确定高温材料表面的传热系数在热处理、热轧机轧辊冷却、和高压除垢。该方法能够确定喷嘴水射流对传热系数或去除高温水垢的影响,并为工业合作伙伴进行冷却和除垢优化。布尔诺理工大学传热与流体流动实验室提出的方法通常用于确定高温材料表面的传热系数在热处理、热轧机轧辊冷却、和高压除垢。该方法能够确定喷嘴水射流对传热系数或去除高温水垢的影响,并为工业合作伙伴进行冷却和除垢优化。布尔诺理工大学传热与流体流动实验室提出的方法通常用于确定高温材料表面的传热系数在热处理、热轧机轧辊冷却、和高压除垢。该方法能够确定喷嘴水射流对传热系数或去除高温水垢的影响,并为工业合作伙伴进行冷却和除垢优化。
更新日期:2020-11-01
down
wechat
bug