当前位置: X-MOL 学术J. Astron. Telesc. Instrum. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wavefront sensing and control in space-based coronagraph instruments using Zernike’s phase-contrast method
Journal of Astronomical Telescopes, Instruments, and Systems ( IF 1.7 ) Pub Date : 2020-11-01 , DOI: 10.1117/1.jatis.6.4.045005
Garreth Ruane 1 , J. Kent Wallace 1 , John Steeves 1 , Camilo Mejia Prada 1 , Byoung-Joon Seo 1 , Eduardo Bendek 1 , Carl Coker 1 , Pin Chen 1 , Brendan Crill 1 , Jeff Jewell 1 , Brian Kern 1 , David Marx 1 , Phillip K. Poon 1 , David Redding 1 , A. J. Eldorado Riggs 1 , Nicholas Siegler 1 , Robert Zimmer 1
Affiliation  

Future space telescopes with coronagraph instruments will use a wavefront sensor (WFS) to measure and correct for phase errors and stabilize the stellar intensity in high-contrast images. The HabEx and LUVOIR mission concepts baseline a Zernike wavefront sensor (ZWFS), which uses Zernike’s phase contrast method to convert phase in the pupil into intensity at the WFS detector. In preparation for these potential future missions, we experimentally demonstrate a ZWFS in a coronagraph instrument on the Decadal Survey Testbed in the High Contrast Imaging Testbed facility at NASA’s Jet Propulsion Laboratory. We validate that the ZWFS can measure low- and mid-spatial frequency aberrations up to the control limit of the deformable mirror (DM), with surface height sensitivity as small as 1 pm, using a configuration similar to the HabEx and LUVOIR concepts. Furthermore, we demonstrate closed-loop control, resolving an individual DM actuator, with residuals consistent with theoretical models. In addition, we predict the expected performance of a ZWFS on future space telescopes using natural starlight from a variety of spectral types. The most challenging scenarios require ∼1 h of integration time to achieve picometer sensitivity. This timescale may be drastically reduced by using internal or external laser sources for sensing purposes. The experimental results and theoretical predictions presented here advance the WFS technology in the context of the next generation of space telescopes with coronagraph instruments.

中文翻译:

使用Zernike相位对比方法的天基日冕仪中的波前感测和控制

未来使用日冕仪的太空望远镜将使用波前传感器(WFS)来测量和校正相位误差,并稳定高对比度图像中的恒星强度。HabEx和LUVOIR任务概念以Zernike波前传感器(ZWFS)为基线,该传感器使用Zernike的相位对比方法将瞳孔中的相位转换为WFS检测器的强度。为准备这些潜在的未来任务,我们在美国国家航空航天局喷气推进实验室的高对比度成像测试台设施的十年代测量测试台上的日冕仪中通过实验演示了ZWFS。我们验证了ZWFS使用与HabEx和LUVOIR概念类似的配置,可以测量直至可变形反射镜(DM)的控制极限的低空间和中空间频率像差,并且表面高度灵敏度低至1 pm。此外,我们演示了闭环控制,解决了单个DM执行器,其残差与理论模型一致。另外,我们使用来自各种光谱类型的自然星光来预测ZWFS在未来太空望远镜上的预期性能。最具挑战性的场景需要约1小时的积分时间才能达到皮克计的灵敏度。通过使用内部或外部激光源进行感测,可以大大减少此时间尺度。本文介绍的实验结果和理论预测在具有电晕仪的下一代空间望远镜的背景下推动了WFS技术的发展。我们使用来自各种光谱类型的自然星光来预测ZWFS在未来太空望远镜上的预期性能。最具挑战性的场景需要约1小时的积分时间才能达到皮克计的灵敏度。通过使用内部或外部激光源进行感测,可以大大减少此时间尺度。本文介绍的实验结果和理论预测在具有电晕仪的下一代空间望远镜的背景下推动了WFS技术的发展。我们使用来自各种光谱类型的自然星光来预测ZWFS在未来太空望远镜上的预期性能。最具挑战性的场景需要约1小时的积分时间才能达到皮克计的灵敏度。通过使用内部或外部激光源进行感测,可以大大减少此时间尺度。本文介绍的实验结果和理论预测在具有电晕仪的下一代空间望远镜的背景下推动了WFS技术的发展。
更新日期:2020-11-09
down
wechat
bug