当前位置: X-MOL 学术Mater. Sci. Semicond. Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic effect of N-rGO supported Gd doped bismuth ferrite heterojunction on enhanced photocatalytic degradation of rhodamine B
Materials Science in Semiconductor Processing ( IF 4.2 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.mssp.2020.105538
Tarun Kumar Dixit , Sweta Sharma , A.S.K. Sinha

Abstract An active composite of nitrogen-doped graphene oxide (N-rGO) supported gadolinium doped bismuth ferrite (BGFO), (BGFO/N-rGO), was synthesized by a modified hydrothermal method. The composite was characterized by X-ray photoelectron spectroscopy (XPS), fourier transform-infrared (FT-IR), diffused reflectance spectroscopy (DRS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron spectroscopy (TEM), electrical impedance spectroscopy (EIS), photoluminescence (PL) and mott-schottky (M-S) analysis. Doping of Gd in pristine bismuth ferrite suppressed photoinduced electron-hole pair recombination. This resulted in a significant increase in the photocatalytic activity of BGFO (k = 7.89 gcat-1.h-1) in comparison to bare bismuth ferrite (k = 3.15 gcat-1.h-1) on the degradation of RhB. Further, incorporation of N-rGO with BGFO lead to the formation of a heterojunction that provided high surface area and a passage to transfer the electrons from BGFO to N-rGO. This further reduced the electron-hole pair recombination and improved the photocatalytic degradation of rhodamine B by 600% (k = 18.91 gcat-1.h-1) due to the availability of sufficient charge carriers at the surface of the catalyst. Superoxide ion (O2−•) was found most active radical among the various reactive species viz. hydroxyl ion (OH•), electron (e-), and hole (h+) as confirmed by trapping experiments. A proposed mechanism of the degradation process was elucidated by species trapping experiments.

中文翻译:

N-rGO负载Gd掺杂铁氧体铋异质结对增强光催化降解罗丹明B的协同作用

摘要 通过改进的水热法合成了氮掺杂氧化石墨烯(N-rGO)负载钆掺杂铁氧体铋(BGFO)的活性复合材料(BGFO/N-rGO)。通过 X 射线光电子能谱 (XPS)、傅里叶变换红外 (FT-IR)、漫反射光谱 (DRS)、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、透射电子能谱 (TEM)、电阻抗谱 (EIS)、光致发光 (PL) 和莫特-肖特基 (MS) 分析。在原始铁氧体铋中掺杂 Gd 抑制了光致电子-空穴对复合。这导致与裸铋铁氧体 (k = 3.15 gcat-1.h-1) 相比,BGFO (k = 7.89 gcat-1.h-1) 对 RhB 降解的光催化活性显着增加。更多,N-rGO 与 BGFO 的结合导致形成异质结,该异质结提供高表面积和将电子从 BGFO 转移到 N-rGO 的通道。由于催化剂表面有足够的电荷载流子,这进一步减少了电子-空穴对复合,并将罗丹明 B 的光催化降解提高了 600% (k = 18.91 gcat-1.h-1)。发现超氧离子 (O2−•) 在各种活性物质中最为活跃,即。捕获实验证实了氢氧根离子 (OH•)、电子 (e-) 和空穴 (h+)。通过物种捕获实验阐明了降解过程的拟议机制。由于催化剂表面有足够的电荷载流子,这进一步减少了电子-空穴对复合,并将罗丹明 B 的光催化降解提高了 600% (k = 18.91 gcat-1.h-1)。发现超氧离子 (O2−•) 在各种活性物质中最为活跃,即。捕获实验证实了氢氧根离子 (OH•)、电子 (e-) 和空穴 (h+)。通过物种捕获实验阐明了降解过程的拟议机制。由于催化剂表面有足够的电荷载流子,这进一步减少了电子-空穴对复合,并将罗丹明 B 的光催化降解提高了 600% (k = 18.91 gcat-1.h-1)。发现超氧离子 (O2−•) 在各种活性物质中最为活跃,即。捕获实验证实了氢氧根离子 (OH•)、电子 (e-) 和空穴 (h+)。通过物种捕获实验阐明了降解过程的拟议机制。和孔 (h+) 由捕获实验证实。通过物种捕获实验阐明了降解过程的拟议机制。和孔 (h+) 由捕获实验证实。通过物种捕获实验阐明了降解过程的拟议机制。
更新日期:2021-03-01
down
wechat
bug