当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced magnetoelectric response in nanostructures due to flexoelectric and flexomagnetic effects
Journal of Magnetism and Magnetic Materials ( IF 2.7 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jmmm.2020.167523
Yang Shi , Ni Li , Junjie Ye , Juan Ma

Abstract This paper presents the constitutive modeling of the piezoeffect- (piezoelectric and piezomagnetic effects) and flexoeffect- (flexoelectric and flexomagnetic effects) induced magnetoelectric (ME) coupling in multiferroic nanocomposites. The governing equations and associated boundary conditions involving in both piezoeffect and flexoeffect are solved to evaluate ME response of a nano-structure under extensional-bending coupling vibration. The enhanced ME coupling via flexoeffect has been noted for thin structures with nanoscale thickness. In addition, an obvious ME coupling due to flexoeffect is observed even though the piezoelectric and piezomagnetic effects vanish simultaneously. Particularly, ME coupling in magnetoelectric-like nano-structures is expected to reach 78% of that in a typical ME structure CoFe2O4-PZT for μ3113=3x10-7/C/m. The output power density of ME energy can be improved by decreasing the thickness, increasing flexoeffect constant, and using a proper load impedance. The most important is that an appreciable output power density of 18.3 W/m3 is available for magnetic energy harvester composed of dielectric layers without piezoelectricity and magnetic layer without piezomagnetism. Given the significance of the new coupling mechanism based on flexo- coupling, the theory proposed in this paper may be utilized in developing high-performance ME nano-structures without using any conventional piezoelectric and piezomagnetic materials.

中文翻译:

由于挠曲电和挠曲磁效应增强了纳米结构中的磁电响应

摘要 本文介绍了多铁性纳米复合材料中压电效应(压电和压电效应)和挠曲效应(挠曲电和挠磁效应)感应磁电 (ME) 耦合的本构模型。求解涉及压电效应和挠曲效应的控制方程和相关边界条件,以评估纳米结构在拉伸弯曲耦合振动下的 ME 响应。已经注意到通过柔印效应增强的 ME 耦合用于具有纳米级厚度的薄结构。此外,即使压电和压磁效应同时消失,也观察到由​​于柔顺效应引起的明显 ME 耦合。特别是,对于 μ3113=3x10-7/C/m,类磁电纳米结构中的 ME 耦合有望达到典型 ME 结构 CoFe2O4-PZT 中的 78%。ME 能量的输出功率密度可以通过减小厚度、增加柔印效应常数和使用适当的负载阻抗来提高。最重要的是,由没有压电性的介电层和没有压电性的磁性层组成的磁能收集器可获得 18.3 W/m3 的可观输出功率密度。鉴于基于柔性耦合的新耦合机制的重要性,本文提出的理论可用于开发高性能 ME 纳米结构,而无需使用任何传统的压电和压磁材料。3 W/m3 可用于由无压电性的介电层和无压磁性的磁性层组成的磁能收集器。鉴于基于柔性耦合的新耦合机制的重要性,本文提出的理论可用于开发高性能 ME 纳米结构,而无需使用任何传统的压电和压磁材料。3 W/m3 可用于由无压电性的介电层和无压磁性的磁性层组成的磁能收集器。鉴于基于柔性耦合的新耦合机制的重要性,本文提出的理论可用于开发高性能 ME 纳米结构,而无需使用任何传统的压电和压磁材料。
更新日期:2021-03-01
down
wechat
bug