当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer and second law analysis of turbulent flow mixed convection condensation inside a vertical channel
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.120658
Dipanka Bhuyan , Asis Giri

Abstract Study of condensation is important for effective energy management of many thermal systems like power plant, chemical processing unit, refrigerator, air-conditioner, cold storage unit, desalination and solar stills unit etc. Condensation of air-water vapour system for turbulent flow mixed convective condition is thoroughly analysed here. Pletcher's mixing length model is used to determine turbulent viscosity, thermal conductivity and mass diffusivity. Heat and mass transfer as well as entropy generation analysis of turbulent flow condensation is extensively investigated. Higher Reynolds number condition increases both the overall thermal and condensing Nusselt number. Relative humidity does not significantly influence overall thermal Nusselt number, but it certainly does influence overall condensing Nusselt number. Increased inlet pressure increases overall thermal Nusselt number, whereas it reduces overall condensing Nusselt number. Overall thermal transport entropy generation as well as overall mass transport entropy generation show enhancement with Reynolds number and relative humidity. Both the overall entropy generation reduces with higher inlet pressure condition. Second law efficiency enhances with Reynolds number, but deceases with relative humidity. Higher inlet pressure enhances second law efficiency. Finally correlations of pressure drop, induced velocity, overall Nusselt numbers and overall entropy generations for turbulent flow condensation are reported.

中文翻译:

垂直通道内湍流混合对流冷凝的传热及第二定律分析

摘要 冷凝研究对于发电厂、化学处理装置、冰箱、空调、冷库、海水淡化和太阳能蒸馏装置等许多热力系统的有效能源管理具有重要意义。这里对对流条件进行了彻底的分析。Pletcher 的混合长度模型用于确定湍流粘度、热导率和质量扩散率。对湍流冷凝的传热和传质以及熵生成分析进行了广泛的研究。较高的雷诺数条件会增加整体热和冷凝努塞尔数。相对湿度不会显着影响整体热努塞尔数,但它肯定会影响整体冷凝努塞尔数。增加的入口压力会增加整体热努塞尔数,而它会降低整体冷凝努塞尔数。总体热传递熵生成以及总体质量传递熵生成随着雷诺数和相对湿度的增加而增强。总的熵产生随着入口压力的增加而减少。第二定律效率随雷诺数增加,但随相对湿度而降低。较高的入口压力可提高第二定律效率。最后报告了湍流凝结的压降、诱导速度、总努塞尔数和总熵产生的相关性。总体热传递熵生成以及总体质量传递熵生成随着雷诺数和相对湿度的增加而增强。总的熵产生随着入口压力的增加而减少。第二定律效率随雷诺数增加,但随相对湿度而降低。较高的入口压力可提高第二定律效率。最后报告了湍流凝结的压降、诱导速度、总努塞尔数和总熵产生的相关性。总体热传递熵生成以及总体质量传递熵生成随着雷诺数和相对湿度的增加而增强。总的熵产生随着入口压力的增加而减少。第二定律效率随雷诺数增加,但随相对湿度而降低。较高的入口压力可提高第二定律效率。最后报告了湍流凝结的压降、诱导速度、总努塞尔数和总熵产生的相关性。
更新日期:2021-02-01
down
wechat
bug