当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulation and experimental study of induction heat treatment of titanium disks
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ijheatmasstransfer.2020.120668
Aleksandr Fomin , Vladimir Koshuro , Andrey Shchelkunov , Alexander Aman , Marina Fomina , Svetlana Kalganova

Abstract During induction heat treatment (IHT) of titanium disks, the influence of the main electrotechnological parameters, in particular the inductor current, on the temperature of their surfaces was established at an exposure within t = 5 min. In the course of numerical simulation, i.e. when solving the self-consistent boundary value problem of electrodynamics and thermal conductivity for the "inductor – titanium disk" system, the influence of the inductor current in the range 2.7–4.5 kA on the average exposure temperature of the titanium disk was determined, which varied from 800–850°C to the melting temperature (about 1670°C) and above. In order to confirm numerical calculations, experimental studies on IHT in the same temperature range were performed. In addition to the inductor current IIND varying in the range from 2.7 to 4.5 kA, the influence of the corresponding value of the electric power PE in the range from 0.21 to 0.95 kW on the exposure temperature during IHT was considered. Changes in the surface morphology of the titanium disks were studied over a wide temperature range. The initial oxide coating was retained on the surfaces of the samples processed at a minimum exposure temperature of T = 800–850°C. A thick scale of titanium dioxide was also preserved on the surfaces of semi-molten titanium disks. In the IHT exposure range at temperatures from 1000–1050°C to 1500–1550°C, the scale was spontaneously separated from the surfaces of titanium disks; however, a high-strength oxide sublayer was formed under it.

中文翻译:

钛盘感应热处理仿真与实验研究

摘要 在钛圆盘的感应热处理 (IHT) 过程中,主要电工参数,特别是电感电流,对其表面温度的影响在 t = 5 分钟内确定。在数值模拟过程中,即在求解“电感-钛盘”系统的电动力学和热导率自洽边值问题时,电感电流在2.7-4.5 kA范围内对平均暴露温度的影响确定了钛盘的温度,从 800-850°C 到熔化温度(约 1670°C)和更高。为了证实数值计算,在相同温度范围内对 IHT 进行了实验研究。除了电感电流 IIND 在 2.7 到 4.5 kA 的范围内变化之外,考虑了0.21~0.95kW范围内对应的电力PE值对IHT期间暴露温度的影响。在很宽的温度范围内研究了钛盘表面形态的变化。在最低暴露温度 T = 800–850°C 下处理的样品表面上保留了初始氧化物涂层。在半熔融钛圆盘的表面上还保留了一层厚厚的二氧化钛。在 1000-1050°C 至 1500-1550°C 温度下的 IHT 暴露范围内,氧化皮自发地与钛盘表面分离;然而,在其下方形成了高强度氧化物亚层。在很宽的温度范围内研究了钛盘表面形态的变化。在最低暴露温度 T = 800–850°C 下处理的样品表面上保留了初始氧化物涂层。在半熔融钛圆盘的表面上还保留了一层厚厚的二氧化钛。在温度为 1000-1050°C 到 1500-1550°C 的 IHT 暴露范围内,氧化皮与钛盘表面自发分离;然而,在其下方形成了高强度氧化物亚层。在很宽的温度范围内研究了钛盘表面形态的变化。在最低暴露温度 T = 800–850°C 下处理的样品表面上保留了初始氧化物涂层。在半熔融钛圆盘的表面上还保留了一层厚厚的二氧化钛。在温度为 1000-1050°C 到 1500-1550°C 的 IHT 暴露范围内,氧化皮与钛盘表面自发分离;然而,在其下方形成了高强度氧化物亚层。在半熔融钛圆盘的表面上还保留了一层厚厚的二氧化钛。在温度为 1000-1050°C 到 1500-1550°C 的 IHT 暴露范围内,氧化皮与钛盘表面自发分离;然而,在其下方形成了高强度氧化物亚层。在半熔融钛圆盘的表面上还保留了一层厚厚的二氧化钛。在温度为 1000-1050°C 到 1500-1550°C 的 IHT 暴露范围内,氧化皮与钛盘表面自发分离;然而,在其下方形成了高强度氧化物亚层。
更新日期:2021-02-01
down
wechat
bug