当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyper oxidized V6O13+x·nH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions
Energy Storage Materials ( IF 18.9 ) Pub Date : 2020-11-09 , DOI: 10.1016/j.ensm.2020.11.001
Balaji Sambandam , Seokhun Kim , Duong Tung Pham , Vinod Mathew , Jun Lee , Seulgi Lee , Vaiyapuri Soundharrajan , Sungjin Kim , Muhammad H. Alfaruqi , Jang-Yeon Hwang , Jaekook Kim

The origin of parasitic reaction formed/dissolved during the electrochemical reaction at the interface and the conformity role of H+/H2O carrier during electrochemical reaction in aqueous Zn salt electrolyte medium of aqueous rechargeable zinc-ion batteries (ARZIBs), is almost recognized halfway; albeit the consequence of this side reaction is not established yet. Through operando X-ray diffraction analyses in two different electrolytes, the parasitic phases and the dual carriers are recognized in a hyper non-stoichiometry layered oxide of V6O13+x.nH2O as cathode. Indeed, galvanostatic intermittent titration (GITT) and operando potentiostatic electrochemical impedance spectroscopy (PEIS) techniques are utilized to clearly show the parasitic phase of thick ZBS (zinc basic sulfate) layer negatively influence the reaction kinetics at the interface in ZnSO4 electrolyte and hence the performance, especially at low current surges. Thus, the layered cathode demonstrated exceptional stability especially in Zn (CF3SO3)2 electrolyte. For example, in a 1 M ZnSO4/1 M Zn (CF3SO3)2 aqueous electrolyte, nearly 80/65% capacity retention over 2,000/5000 cycles at 15 C is exhibited. Comparative GITT investigations on the overpotential and electrochemical kinetics in ZnSO4 and water electrolytes offer strong evidence for the continuous and reversible co-intercalation of dual carriers of Zn2+and H+/H2O.



中文翻译:

水性可充电锌电池的超氧化V 6 O 13+ x · nH 2 O层状阴极:对双载流子传输和寄生反应的影响

几乎可以识别出在电化学反应期间在界面上形成/溶解的寄生反应的起源,以及在电化学反应中H + / H 2 O载体在水性可充电锌离子电池的锌盐电解质介质中的一致性作用。半; 尽管尚未确定这种副反应的结果。通过在两种不同电解质中的操作X射线衍射分析,可以在V 6 O 13+ x的超非化学计量层状氧化物中识别出寄生相和双载流子nH 2O作为阴极。确实,恒电流间歇滴定(GITT)和操作恒电位电化学阻抗谱(PEIS)技术被用来清楚地表明厚ZBS(碱式硫酸锌)层的寄生相对ZnSO 4电解质界面处的反应动力学有负面影响。性能,尤其是在低电流浪涌时。因此,层状阴极尤其在Zn(CF 3 SO 32电解质中显示出优异的稳定性。例如,于1M的ZnSO 4 / 1M的Zn(CF 3 SO 32水性电解质,在15°C的2,000 / 5000个循环中显示了近80/65%的容量保持率。GITT对ZnSO 4和水电解质中的超电势和电化学动力学的比较研究为Zn 2+和H + / H 2 O双载流子的连续和可逆共嵌入提供了有力证据。

更新日期:2020-11-17
down
wechat
bug