当前位置: X-MOL 学术Agric. Water Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity
Agricultural Water Management ( IF 5.9 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.agwat.2020.106626
Zheli Ding , Esmat F. Ali , Ahmed M. Elmahdy , Khaled E. Ragab , Mahmoud F. Seleiman , Ahmed M.S. Kheir

Abstract Limited water resources and climate change in arid and semi-arid regions have negative impacts on food and water security. Management of irrigation and compost may be used to tackle this issue. Crop models are the powerful tools that could predict grain yield (GY) and water productivity (WP) under a broad range of irrigation, compost and temperature interactions. In addition, modeling irrigation management requires the selection of the most suitable evapotranspiration (ET) approach to achieve robust simulations. To achieve this goal, two crop models in Decision Support System for Agrotechnology Transfer (DSSAT) (i.e. CERES-Wheat and N-Wheat), were calibrated and evaluated using a field dataset of three growing seasons in a high-temperate region in Egypt (Luxor). Then, the models were applied to explore GY and WP across a wide range of irrigation (11 options) and compost (8 rates) interactions using two ET routines such as Priestley-Taylor (PT) and FAO 56 Penman-Monteith (PM). The models were also used to predict (GY) and (WP) within the same range of irrigation and compost interactions at higher temperatures (i.e. +1,2,3 and 4) compared to the baseline outputs (1981–2010). Simulation results showed that, deficit irrigation up to 80% and 85% from soil available water achieved the highest values of GY (7.5 t ha-1) and WP (18.4 kg ha-1 mm-1) respectively, provided that using higher rate of compost (12 t ha-1). Rising temperature up to 4 °C decreased GY and WP by 17.2% and 7.4% respectively relative to the baseline without any benefits from compost. Compost technology does not help offset the negative impacts of temperature, but increased yield reduction and greenhouse gas emissions (GHG). Higher compost rates may be used to mitigate the effect of deficit irrigation on wheat yield and water productivity, but not compatible with mitigation of climate change in arid and semi-arid regions.

中文翻译:

模拟亏缺灌溉、温度升高和堆肥施用对小麦产量和水生产力的综合影响

摘要 干旱和半干旱地区水资源有限和气候变化对粮食和水安全产生负面影响。灌溉和堆肥管理可用于解决这个问题。作物模型是可以在广泛的灌溉、堆肥和温度相互作用下预测谷物产量 (GY) 和水生产力 (WP) 的强大工具。此外,灌溉管理建模需要选择最合适的蒸散 (ET) 方法来实现稳健的模拟。为了实现这一目标,农业技术转让决策支持系统 (DSSAT) 中的两种作物模型(即 CERES-Wheat 和 N-Wheat)使用埃及高温带三个生长季节的现场数据集进行校准和评估(卢克索)。然后,使用 Priestley-Taylor (PT) 和 FAO 56 Penman-Monteith (PM) 等两个 ET 例程,应用这些模型来探索 GY 和 WP 在广泛的灌溉(11 个选项)和堆肥(8 个比率)相互作用中的相互作用。与基线输出(1981-2010)相比,这些模型还用于在较高温度(即+1、2、3 和4)下预测相同范围的灌溉和堆肥相互作用内的(GY)和(WP)。模拟结果表明,土壤有效水含量高达 80% 和 85% 的亏缺灌溉分别达到了 GY(7.5 t ha-1)和 WP(18.4 kg ha-1 mm-1)的最高值,前提是使用较高的灌溉量堆肥 (12 t ha-1)。温度升高至 4 °C 使 GY 和 WP 相对于基线分别降低了 17.2% 和 7.4%,而堆肥没有任何好处。堆肥技术无助于抵消温度的负面影响,但会增加产量减少和温室气体排放 (GHG)。较高的堆肥率可用于减轻灌溉不足对小麦产量和水生产力的影响,但与缓解干旱和半干旱地区的气候变化不相容。
更新日期:2021-02-01
down
wechat
bug