当前位置: X-MOL 学术Indian J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel
Indian Journal of Physics ( IF 2 ) Pub Date : 2020-11-07 , DOI: 10.1007/s12648-020-01906-0
Dharmendra Tripathi , J. Prakash , M. Gnaneswara Reddy , Rakesh Kumar

This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO2) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems.



中文翻译:

电渗诱导的微通道耦合应力混合纳米流体蠕动泵送变化的数值研究

本文提出了一种计算建模方法,以分析通过电渗机制通过微通道对耦合应力混合纳米流体的蠕动泵送。还计算了施加磁场,焦耳热和浮力的影响。在此分析模型中,水性二氧化钛(TiO 2)和银(Ag)杂化纳米流体已被考虑。对于更相关的物理问题,还引入了轴向速度滑移和热滑移条件。非线性微分方程通过考虑Hückel-Debye近似以及润滑理论进行简化,然后通过NDsolve命令由Mathematica 10软件以数值方式求解。关键参数对微通道中的轴向速度,纳米粒子温度,Nusselt数和流线的相关影响已通过图形显示。可以观察到,热格拉索夫数的增加会产生最大的轴向速度,以及水-二氧化钛和水-银纳米流体的纳米颗粒温度。与水银相比,最大轴向速度和纳米粒子温度出现在水-二氧化钛中。该模型的结果在用于热系统和药物输送系统的智能电蠕动泵的设计中将非常有用。

更新日期:2020-11-09
down
wechat
bug