当前位置: X-MOL 学术Arch. Appl. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase field simulation of fatigue crack propagation under complex load situations
Archive of Applied Mechanics ( IF 2.2 ) Pub Date : 2020-11-09 , DOI: 10.1007/s00419-020-01821-0
Christoph Schreiber , Ralf Müller , Charlotte Kuhn

Within this work, we utilize the framework of phase field modeling for fracture in order to handle a very crucial issue in terms of designing technical structures, namely the phenomenon of fatigue crack growth. So far, phase field fracture models were applied to a number of problems in the field of fracture mechanics and were proven to yield reliable results even for complex crack problems. For crack growth due to cyclic fatigue, our basic approach considers an additional energy contribution entering the regularized energy density function accounting for crack driving forces associated with fatigue damage. With other words, the crack surface energy is not solely in competition with the time-dependent elastic strain energy but also with a contribution consisting of accumulated energies, which enables crack extension even for small maximum loads. The load time function applied to a certain structure has an essential effect on its fatigue life. Besides the pure magnitude of a certain load cycle, it is highly decisive at which point of the fatigue life a certain load cycle is applied. Furthermore, the level of the mean load has a significant effect. We show that the model developed within this study is able to predict realistic fatigue crack growth behavior in terms of accurate growth rates and also to account for mean stress effects and different stress ratios. These are important properties that must be treated accurately in order to yield an accurate model for arbitrary load sequences, where various amplitude loading occurs.



中文翻译:

复杂载荷条件下疲劳裂纹扩展的相场模拟

在这项工作中,我们利用相场建模框架进行断裂,以便处理设计技术结构方面的一个非常关键的问题,即疲劳裂纹扩展现象。到目前为止,相场断裂模型已应用于断裂力学领域中的许多问题,并被证明即使对于复杂的裂纹问题也能提供可靠的结果。对于由于周期性疲劳而导致的裂纹扩展,我们的基本方法考虑了将额外的能量贡献输入到正规化的能量密度函数中,从而解决了与疲劳损伤相关的裂纹驱动力。换句话说,裂纹表面能不仅与时间相关的弹性应变能竞争,而且还具有由累积能量组成的贡献,即使在很小的最大载荷下,裂纹也能扩展。应用于特定结构的载荷时间函数对其疲劳寿命具有至关重要的影响。除了某个负载循环的纯粹幅度外,在疲劳寿命的哪个点应用某个负载循环也具有决定性。此外,平均负载水平也有很大的影响。我们表明,在这项研究中开发的模型能够根据准确的增长率来预测实际的疲劳裂纹增长行为,并且能够说明平均应力效应和不同的应力比。这些重要的属性必须进行精确处理,以针对任意载荷序列产生准确的模型,在该载荷序列中会发生各种振幅载荷。在疲劳寿命的哪一点上施加特定的负载循环是至关重要的。此外,平均负载水平也有很大的影响。我们表明,在这项研究中开发的模型能够根据准确的增长率来预测实际的疲劳裂纹增长行为,并且能够说明平均应力效应和不同的应力比。这些重要的属性必须进行精确处理,以针对任意载荷序列产生准确的模型,在该载荷序列中会发生各种振幅载荷。在疲劳寿命的哪一点上施加特定的负载循环是至关重要的。此外,平均负载水平也有很大的影响。我们表明,在这项研究中开发的模型能够根据准确的增长率来预测实际的疲劳裂纹增长行为,并且能够说明平均应力效应和不同的应力比。这些重要的属性必须进行精确处理,以针对任意载荷序列产生准确的模型,在该载荷序列中会发生各种振幅载荷。我们表明,在这项研究中开发的模型能够根据准确的增长率来预测实际的疲劳裂纹增长行为,并且能够说明平均应力效应和不同的应力比。这些重要的属性必须进行精确处理,以针对任意载荷序列产生准确的模型,在该载荷序列中会发生各种振幅载荷。我们表明,在这项研究中开发的模型能够根据准确的增长率来预测实际的疲劳裂纹增长行为,并且能够说明平均应力效应和不同的应力比。这些重要的属性必须进行精确处理,以针对任意载荷序列产生准确的模型,在该载荷序列中会发生各种振幅载荷。

更新日期:2020-11-09
down
wechat
bug