当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manipulation of planar oxygen defect arrangements in multifunctional magnèli titanium oxide hybrid systems: from energy conversion to water treatment
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2020-10-28 , DOI: 10.1039/d0ee02550j
Yichen Liu 1, 2, 3, 4, 5 , Jack Yang 1, 2, 3, 4, 5 , Yang Liu 1, 2, 3, 4, 5 , Jian Zheng 1, 2, 3, 4, 5 , Wen Lee 1, 2, 3, 4, 5 , Junjie Shi 1, 2, 3, 4, 5 , Jonathan Horlyck 3, 4, 5, 6 , Jiangzhou Xie 4, 5, 7 , Yee Yan Tay 8, 9, 10, 11 , Thiam Teck Tan 1, 2, 3, 4, 5 , Dehong Yu 5, 12, 13 , Richard Mole 5, 12, 13 , Garry McIntyre 5, 12, 13 , Changyong Zhang 4, 5, 7 , Cui Ying Toe 3, 4, 5, 6 , T. David Waite 4, 5, 7 , Jason Scott 3, 4, 5, 6 , Yu Wang 4, 5, 14 , Tom Wu 1, 2, 3, 4, 5 , Shenghao Han 15, 16, 17, 18 , Sean Li 1, 2, 3, 4, 5
Affiliation  

An extremely close relationship exists between energy usage and water supply with a tremendous amount of energy being consumed to process water for drinking and other purposes. The current energy crisis and inefficient water management place enormous stress on the sustainability of our society and environment. As such, the development of high-efficiency, cost-effective, and environmentally friendly materials which possess co-existing functionalities for applications ranging from energy capture to water treatment in one material, provides an opportunity to achieve sustainable development. As multifunctional materials, the layer-structured Magnèli titanium oxides with stoichiometry of TinO2n−1 (n ≥ 2) have been extensively studied in view of their potential for photocatalytic, thermoelectric and photothermal applications over the past few years. This group of materials occurs naturally as layered structures with planar oxygen defects, however, understanding of the correlation between the planar arrangements of the oxygen defects and various energy-related properties remains limited. Here, we demonstrate how the formation of layer structured TinO2n−1 with various planar oxygen defect arrangements correlates with the changes of their physical and chemical properties. The experimental results from inelastic neutron scattering analysis and electrical characterizations provide evidence that the planar oxygen defects are responsible for phonon scattering and exert a strong influence on their electrical conductivities. Manipulating these planar defects allows interconversion between different phases, which changes the interplay between electronic and phononic sub-systems. These manipulations potentially enable optimization of the corresponding physical properties of these materials such that they are rendered suitable for applications that require co-operative multifunctionality. More specifically, the experimental results demonstrate that the valence band positions and the onset potentials in the materials are raised, further enhancing their ability for catalysis of electrochemical reactions. This work also demonstrates the combinational effects of the thermoelectric and photothermal properties of these materials on their photocatalytic and electrochemical performance thereby providing a novel means of controlling the multi-response functionality of these materials for a variety of applications in different environments.

中文翻译:

多功能magnèli二氧化钛杂化系统中平面氧缺陷布置的处理:从能量转换到水处理

能源使用与供水之间存在着极为密切的关系,其中大量的能源被消耗用于加工饮用水和其他目的。当前的能源危机和效率低下的水资源管理给我们社会和环境的可持续性带来了巨大压力。因此,开发一种高效,低成本,环保的材料,这些材料具有并存的功能,可用于从一种材料中捕获能量到水处理的各种应用,这为实现可持续发展提供了机会。作为多功能材料,化学计量为Ti n O 2 n -1n的层结构的Magnèli钛氧化物鉴于其在过去几年中在光催化,热电和光热方面的应用潜力,对≥2)进行了广泛的研究。这组材料自然以具有平面氧缺陷的分层结构形式出现,但是,对氧缺陷的平面排列与各种与能量相关的特性之间的相关性的理解仍然有限。在这里,我们演示如何形成层结构Ti n O 2 n -1具有各种平面氧缺陷排列的元素与其物理和化学性质的变化有关。非弹性中子散射分析和电学特性的实验结果提供了证据,表明平面氧缺陷是声子散射的原因,并且对其电导率有很大影响。操纵这些平面缺陷可实现不同相位之间的相互转换,从而改变电子子系统和声子子系统之间的相互作用。这些操作潜在地使这些材料的相应物理性能最优化,从而使其适合于需要协作多功能性的应用。进一步来说,实验结果表明,材料中的价带位置和起始电位提高了,从而进一步增强了其催化电化学反应的能力。这项工作还证明了这些材料的热电性质和光热性质对它们的光催化和电化学性能的综合影响,从而为控制这些材料的多响应功能提供了一种新颖的方法,以用于不同环境中的各种应用。
更新日期:2020-11-06
down
wechat
bug