当前位置: X-MOL 学术Wear › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defining the role of “zero wear volume” in percussive impact
Wear ( IF 5.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.wear.2020.203535
Mohanad Zalzalah , Roger Lewis , Tom Slatter

Abstract This work defines the previously undetermined contribution of the ‘zero wear’ volume, that is geometry change due to material compression that occurs before other mechanisms that cause change through actual material loss are initiated during to repetitive impact. Five metal alloys widely used in engineering applications, each with a different bulk hardness, were the subjects of the experiments. Using a reciprocating hammer type impact wear test apparatus, flat coupon type specimens were subjected to repetitive impact from a chrome steel ball acting normal to the surface. 36,000 impacts were applied at a nominal rate of 10 impacts per second, each with an impact energy of 0.23J and an impact force of 3.5 kN. The impact wear crater on selected worn specimens was examined using a 3D non-contact profilometer. Scanning electron microscopy techniques were used to further examine the damage on the specimens. The main damage mechanism was plastic deformation and surface fatigue due to spalling. Microcracks and adhered wear debris were noted on the specimens, but with no evidence of delamination, while subsurface examination showed no possible microcracks under the impacted surface and only surface pitting could be observed from subsurface examination. Analysis of the wear scars suggests that zero wear volume is the main contributor to the total volume ‘loss’ for all materials, and, for specific materials, plastic flow volume and bulk hardness could be a significant parameter in characterising zero-wear volume and crater depth.

中文翻译:

定义“零磨损量”在冲击冲击中的作用

摘要 这项工作定义了先前未确定的“零磨损”体积的贡献,即由于材料压缩而导致的几何变化,这种变化发生在通过实际材料损失引起变化的其他机制在重复冲击期间启动之前。五种广泛用于工程应用的金属合金,每一种都具有不同的整体硬度,是实验的对象。使用往复锤式冲击磨损试验装置,扁平试样型试样受到垂直于表面作用的铬钢球的重复冲击。以每秒 10 次的名义速度施加 36,000 次冲击,每次冲击能量为 0.23J,冲击力为 3.5 kN。使用 3D 非接触式轮廓仪检查选定磨损试样上的冲击磨损坑。扫描电子显微镜技术被用来进一步检查试样上的损伤。主要的损伤机制是由于剥落引起的塑性变形和表面疲劳。在试样上注意到微裂纹和粘附的磨损碎屑,但没有分层的迹象,而表面下检查显示在受冲击表面下没有可能的微裂纹,从表面下检查只能观察到表面点蚀。磨痕分析表明,零磨损体积是所有材料总体积“损失”的主要因素,对于特定材料,塑性流动体积和体积硬度可能是表征零磨损体积和凹坑的重要参数深度。主要的损伤机制是由于剥落引起的塑性变形和表面疲劳。在试样上注意到微裂纹和粘附的磨损碎屑,但没有分层的迹象,而表面下检查显示在受冲击表面下没有可能的微裂纹,从表面下检查只能观察到表面点蚀。磨痕分析表明,零磨损体积是所有材料总体积“损失”的主要因素,对于特定材料,塑性流动体积和体积硬度可能是表征零磨损体积和凹坑的重要参数深度。主要的损伤机制是由于剥落引起的塑性变形和表面疲劳。在试样上注意到微裂纹和粘附的磨损碎屑,但没有分层的迹象,而表面下检查显示在受冲击表面下没有可能的微裂纹,从表面下检查只能观察到表面点蚀。磨痕分析表明,零磨损体积是所有材料总体积“损失”的主要因素,对于特定材料,塑性流动体积和体积硬度可能是表征零磨损体积和凹坑的重要参数深度。而次表面检查显示在受冲击表面下没有可能的微裂纹,从次表面检查中只能观察到表面点蚀。磨痕分析表明,零磨损体积是所有材料总体积“损失”的主要因素,对于特定材料,塑性流动体积和体积硬度可能是表征零磨损体积和凹坑的重要参数深度。而次表面检查显示在受冲击表面下没有可能的微裂纹,从次表面检查中只能观察到表面点蚀。磨痕分析表明,零磨损体积是所有材料总体积“损失”的主要因素,对于特定材料,塑性流动体积和体积硬度可能是表征零磨损体积和凹坑的重要参数深度。
更新日期:2021-01-01
down
wechat
bug