当前位置: X-MOL 学术Extreme Mech. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Shape-shifting panel from 3D printed undulated ribbon lattice
Extreme Mechanics Letters ( IF 4.3 ) Pub Date : 2020-11-06 , DOI: 10.1016/j.eml.2020.101089
Filippo Agnelli , Michele Tricarico , Andrei Constantinescu

Materials that change their shape in response to external stimuli open up new prospects for efficient and versatile design and shaping of three-dimensional objects. Here, we present a novel class of micro-structures exhibiting an extension-bending coupling (EBC) effect, that can be harnessed as an elementary building block for shape-shifting panels. They are built with a single material as a network of undulated ribbons. The deformations mechanisms of both single and connected undulated ribbons are analysed using the finite element method to explain the main features of the EBC mechanism. For a particular micro-structure of the proposed class, the elastic response is investigated both under small strain assumption combining two-scale homogenization with Kirchhoff–Love plate theory, and at finite strains relying on numerical analysis. The range of achievable EBC ratio is then assessed with respect to the geometric parameters of the unit cell. Patterned specimens are manufactured using a commercial FFF Ultimaker 3D printer and are mechanically tested at finite strain up to 20%. The displacement measured by point tracking match the predictions from the finite element simulations and indicate that the structure maintain its properties at finite strain. Moreover, a tensile test load with point-like boundary is proposed to highlight exceptional out of plane displacement. The proposed ribbon based architectures can be combined with active materials for the actuation of shape shifting structures, like soft robots, control systems and power devices.



中文翻译:

由3D打印起伏的色带格子制成的可变形面板

响应外部刺激而改变形状的材料为高效,通用的三维物体设计和造型开辟了新的前景。在这里,我们呈现出一类新颖的微结构,展现出延伸-弯曲耦合(EBC)效应,可以将其用作变形面板的基本构件。它们由单一材料构建为起伏的色带网络。利用有限元方法分析了单条和相连波纹带的变形机理,以解释EBC机制的主要特征。对于所提议类别的特定微观结构,在小应变假设下结合了Kirchhoff-Love板理论的两尺度均质化以及在有限应变下的数值分析,研究了弹性响应。然后,根据晶胞的几何参数评估可达到的EBC比的范围。使用商用FFF Ultimaker 3D打印机制造带图案的标本,并在高达20%的有限应变下进行机械测试。通过点跟踪测量的位移与有限元模拟的预测相符,并表明该结构在有限应变下保持其特性。此外,提出了具有点状边界的拉伸试验载荷,以突出显示异常的平面外位移。所提出的基于功能区的体系结构可以与活性材料结合使用,以驱动诸如软机器人,控制系统和动力设备之类的变形结构。使用商用FFF Ultimaker 3D打印机制造带图案的标本,并在高达20%的有限应变下进行机械测试。通过点跟踪测量的位移与有限元模拟的预测相符,并表明该结构在有限应变下保持其特性。此外,提出了具有点状边界的拉伸试验载荷,以突出显示异常的平面外位移。所提出的基于功能区的体系结构可以与活性材料结合使用,以驱动诸如软机器人,控制系统和动力设备之类的变形结构。使用商用FFF Ultimaker 3D打印机制造带图案的标本,并在高达20%的有限应变下进行机械测试。通过点跟踪测量的位移与有限元模拟的预测相符,并表明该结构在有限应变下保持其特性。此外,提出了具有点状边界的拉伸试验载荷,以突出显示异常的平面外位移。所提出的基于功能区的体系结构可以与活性材料结合使用,以驱动诸如软机器人,控制系统和动力设备之类的变形结构。通过点跟踪测量的位移与有限元模拟的预测相符,并表明该结构在有限应变下保持其特性。此外,提出了具有点状边界的拉伸试验载荷,以突出显示异常的平面外位移。所提出的基于功能区的体系结构可以与活性材料结合使用,以驱动诸如软机器人,控制系统和动力设备之类的变形结构。通过点跟踪测量的位移与有限元模拟的预测相符,并表明该结构在有限应变下保持其特性。此外,提出了具有点状边界的拉伸试验载荷,以突出显示异常的平面外位移。所提出的基于功能区的体系结构可以与活性材料结合使用,以驱动诸如软机器人,控制系统和动力设备之类的变形结构。

更新日期:2020-11-19
down
wechat
bug