当前位置: X-MOL 学术Cryst. Growth Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetics of Crystallization and Orientational Ordering in Dipolar Particle Systems
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2020-11-05 , DOI: 10.1021/acs.cgd.0c01152
Xian-Qi Xu , Brian B. Laird 1 , Jeffrey J. Hoyt 2 , Mark Asta 3 , Yang Yang
Affiliation  

The kinetic mechanisms underlying the bottom-up assembly of colloidal particles have been widely investigated in efforts to control crystallization pathways and to direct growth into targeted superstructures for applications, including photonic crystals. Current work builds on recent progress in the development of kinetic theories for crystal growth of bcc crystals in systems with short-range interparticle interactions, accounting for a greater diversity of crystal structures (including fcc and noncubic crystals) and the role of the longer-ranged interactions and orientational degrees of freedom arising in polar systems. We address the importance of orientational ordering processes in influencing crystal growth in such polar systems, thus advancing the theory beyond the treatment of the translational ordering processes considered in previous investigations. The work employs comprehensive molecular dynamics simulations that resolve key crystallization processes and are used in the development of a quantitative theoretical framework based on ideas from time-dependent Ginzburg–Landau theory. The significant effect of orientational ordering (polarization or magnetization) on the crystallization kinetics could be potentially leveraged to achieve solidification kinetics steering through external electric or magnetic fields. Our combined theory/simulation approach provides opportunities for future investigations of more complex crystallization kinetics.

中文翻译:

偶极粒子系统中的结晶动力学和取向有序

自下而上的胶体颗粒组装的动力学机制已被广泛研究,以努力控制结晶路径并引导生长成目标的超结构以用于包括光子晶体在内的应用。当前的工作基于在具有短程粒子间相互作用的系统中bcc晶体晶体生长的动力学理论发展的最新进展,这说明了晶体结构(包括fcc和非立方晶体)具有更大的多样性以及长程晶体的作用极系统中产生的相互作用和取向自由度。我们强调了取向有序过程在影响此类极性系统中晶体生长的重要性,从而使该理论超出了先前研究中所考虑的翻译顺序过程的处理范围。这项工作采用了综合的分子动力学模拟方法,解决了关键的结晶过程,并被用于基于依赖时间的Ginzburg-Landau理论的思想的定量理论框架的开发。取向有序化(极化或磁化)对结晶动力学的重大影响可能会被利用,以通过外部电场或磁场实现凝固动力学。我们结合的理论/模拟方法为将来更复杂的结晶动力学研究提供了机会。这项工作采用了全面的分子动力学模拟,解决了关键的结晶过程,并被用于基于时间依赖的Ginzburg-Landau理论的思想开发定量理论框架。取向有序化(极化或磁化)对结晶动力学的重大影响可潜在地被利用,以通过外部电场或磁场实现凝固动力学。我们结合的理论/模拟方法为将来更复杂的结晶动力学研究提供了机会。这项工作采用了综合的分子动力学模拟方法,解决了关键的结晶过程,并被用于基于依赖时间的Ginzburg-Landau理论的思想的定量理论框架的开发。取向有序化(极化或磁化)对结晶动力学的重大影响可潜在地被利用,以通过外部电场或磁场实现凝固动力学。我们结合的理论/模拟方法为将来更复杂的结晶动力学研究提供了机会。取向有序化(极化或磁化)对结晶动力学的重大影响可能会被利用,以通过外部电场或磁场实现凝固动力学。我们结合的理论/模拟方法为将来更复杂的结晶动力学研究提供了机会。取向有序化(极化或磁化)对结晶动力学的重大影响可潜在地被利用,以通过外部电场或磁场实现凝固动力学。我们结合的理论/模拟方法为将来更复杂的结晶动力学研究提供了机会。
更新日期:2020-12-02
down
wechat
bug