当前位置: X-MOL 学术J. Geophys. Res. Planets › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Probabilistic Approach to Determination of Ceres' Average Surface Composition From Dawn Visible‐Infrared Mapping Spectrometer and Gamma Ray and Neutron Detector Data
Journal of Geophysical Research: Planets ( IF 4.8 ) Pub Date : 2020-11-05 , DOI: 10.1029/2020je006606
H. Kurokawa 1 , B. L. Ehlmann 2, 3 , M. C. De Sanctis 4 , M. G. A. Lapôtre 5 , T. Usui 6 , N. T. Stein 2 , T. H. Prettyman 7 , A. Raponi 8 , M. Ciarniello 8
Affiliation  

The Visible‐Infrared Mapping Spectrometer (VIR) on board the Dawn spacecraft revealed that aqueous secondary minerals—Mg‐phyllosilicates, NH4‐bearing phases, and Mg/Ca carbonates—are ubiquitous on Ceres. Ceres' low reflectance requires dark phases, which were assumed to be amorphous carbon and/or magnetite (∼80 wt.%). In contrast, the Gamma Ray and Neutron Detector (GRaND) constrained the abundances of C (8–14 wt.%) and Fe (15–17 wt.%). Here, we reconcile the VIR‐derived mineral composition with the GRaND‐derived elemental composition. First, we model mineral abundances from VIR data, including either meteorite‐derived insoluble organic matter (IOM), amorphous carbon, magnetite, or combination as the darkening agent and provide statistically rigorous error bars from a Bayesian algorithm combined with a radiative‐transfer model. Elemental abundances of C and Fe are much higher than is suggested by the GRaND observations for all models satisfying VIR data. We then show that radiative transfer modeling predicts higher reflectance from a carbonaceous chondrite of known composition than its measured reflectance. Consequently, our second models use multiple carbonaceous chondrite endmembers, allowing for the possibility that their specific textures or minerals other than carbon or magnetite act as darkening agents, including sulfides and tochilinite. Unmixing models with carbonaceous chondrites eliminate the discrepancy in elemental abundances of C and Fe. Ceres' average reflectance spectrum and elemental abundances are best reproduced by carbonaceous‐chondrite‐like materials (40–70 wt.%), IOM or amorphous carbon (10 wt.%), magnetite (3–8 wt.%), serpentine (10–25 wt.%), carbonates (4–12 wt.%), and NH4‐bearing phyllosilicates (1–11 wt.%).

中文翻译:

从黎明可见光红外光谱仪,伽马射线和中子探测器数据确定谷胱甘肽平均表面成分的概率方法

黎明航天器上的可见红外光谱仪(VIR)揭示了含水次生矿物质-叶硅酸镁,NH 4轴承相和镁/钙碳酸盐在谷神星上无处不在。谷蜡的低反射率要求暗相,其被认为是非晶碳和/或磁铁矿(〜80 wt。%)。相反,伽马射线和中子探测器(GRaND)限制了C(8–14 wt。%)和Fe(15–17 wt。%)的丰度。在这里,我们将VIR衍生的矿物成分与GRaND衍生的元素成分进行协调。首先,我们从VIR数据模拟矿物丰度,包括陨石衍生的不溶有机物(IOM),无定形碳,磁铁矿或作为变黑剂的组合,并根据贝叶斯算法结合辐射转移模型提供统计严格的误差线。对于所有满足VIR数据的模型,C和Fe的元素丰度远高于GRaND观测结果所建议的。然后,我们表明,辐射转移模型比已知的反射率预测的碳酸盐球粒陨石的反射率更高。因此,我们的第二个模型使用了多个碳质球粒陨石端部构件,从而有可能使它们的特定质地或除碳或磁铁矿之外的矿物质充当发黑剂,包括硫化物和甲苯磺酸钠。碳质球粒陨石的解混模型消除了C和Fe元素丰度的差异。谷蜡的平均反射光谱和元素丰度最好由碳质球粒状材料(40-70 wt。%),IOM或无定形碳(10 wt。%),磁铁矿(3-8 wt。%),蛇纹石( 10–25 wt。%),碳酸盐(4–12 wt。%)和NH 允许除碳或磁铁矿之外,其特定的质地或矿物质还可以用作发黑剂,包括硫化物和to石。碳质球粒陨石的解混模型消除了C和Fe元素丰度的差异。谷蜡的平均反射光谱和元素丰度最好由碳质球粒状材料(40-70 wt。%),IOM或无定形碳(10 wt。%),磁铁矿(3-8 wt。%),蛇纹石( 10–25 wt。%),碳酸盐(4–12 wt。%)和NH 允许除碳或磁铁矿之外,其特定的质地或矿物质还可以用作发黑剂,包括硫化物和to石。碳质球粒陨石的解混模型消除了C和Fe元素丰度的差异。谷蜡的平均反射光谱和元素丰度最好由碳质球粒状材料(40-70 wt。%),IOM或无定形碳(10 wt。%),磁铁矿(3-8 wt。%),蛇纹石( 10–25 wt。%),碳酸盐(4–12 wt。%)和NH4层状页硅酸盐(1–11 wt。%)。
更新日期:2020-12-14
down
wechat
bug