当前位置: X-MOL 学术J. Magn. Magn. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The promise of spintronics for unconventional computing
Journal of Magnetism and Magnetic Materials ( IF 2.5 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jmmm.2020.167506
Giovanni Finocchio , Massimiliano Di Ventra , Kerem Y. Camsari , Karin Everschor-Sitte , Pedram Khalili Amiri , Zhongming Zeng

Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/or stochasticity that spintronic devices can exhibit, and (iii) their compatibility with CMOS logic manufacturing processes. At the same time, the high endurance and speed of spintronic devices means that they can be rewritten or reconfigured frequently over the lifetime of a circuit, a feature that is essential in many emerging computing concepts. In this perspective, we will discuss how spintronics may aid in the realization of efficient devices primarily based on magnetic tunnel junctions and how those devices can impact in the development of three unconventional computing paradigms, namely, reservoir computing, probabilistic computing and memcomputing that in our opinion may be used to address some limitations of modern computers, providing a realistic path to intelligent hybrid CMOS-spintronic systems.

中文翻译:

自旋电子学对非常规计算的承诺

新的计算范式可以提供蓝图来帮助解决我们现代计算机面临的时间和能源限制,并比目前可能的方法更有效地(以减少的时间、功耗和/或更少的设备占用空间)提供复杂问题的解决方案。标准方法。自旋电子学为开发高效设备和非常规操作提供了有前景的基础,至少有以下三个主要原因:(i)基于自旋的设备的低功耗要求,即不需要备用电源进行操作,并且可以用小的动态能量耗散,(ii) 自旋电子器件可以表现出的强非线性、时间非局部性和/或随机性,以及 (iii) 它们与 CMOS 逻辑制造工艺的兼容性。同时,自旋电子器件的高耐久性和高速度意味着它们可以在电路的整个生命周期内频繁地重写或重新配置,这是许多新兴计算概念中必不可少的特征。从这个角度来看,我们将讨论自旋电子学如何帮助实现主要基于磁隧道结的高效设备,以及这些设备如何影响三种非常规计算范式的发展,即储层计算、概率计算和内存计算。意见可用于解决现代计算机的一些局限性,为智能混合 CMOS 自旋电子系统提供一条现实途径。在许多新兴计算概念中必不可少的功能。从这个角度来看,我们将讨论自旋电子学如何帮助实现主要基于磁隧道结的高效设备,以及这些设备如何影响三种非常规计算范式的发展,即储层计算、概率计算和内存计算。意见可用于解决现代计算机的一些局限性,为智能混合 CMOS 自旋电子系统提供一条现实途径。在许多新兴计算概念中必不可少的功能。从这个角度来看,我们将讨论自旋电子学如何帮助实现主要基于磁隧道结的高效设备,以及这些设备如何影响三种非常规计算范式的发展,即储层计算、概率计算和内存计算。意见可用于解决现代计算机的一些局限性,为智能混合 CMOS 自旋电子系统提供一条现实途径。
更新日期:2021-03-01
down
wechat
bug