当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multiscale simulation approach to grinding ferrous surfaces for process optimization
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ijmecsci.2020.106186
S.J. Eder , S. Leroch , P.G. Grützmacher , T. Spenger , H. Heckes

Abstract A fundamental optimization of a grinding process usually involves expensive equipment and experimental matrices covering a large parameter space. To aid this often cumbersome procedure, here we present three simulation approaches that are intrinsically related and even use the same software, but consider the grinding process at different levels of detail, thus spanning several length scales. Using a molecular dynamics (MD) model, we subject a nanocrystalline carbon steel work piece to grinding by hard alumina abrasives and study material removal and surface topography. A second, much larger MD model allows us to additionally study the microstructural and stress response of a polycrystalline ferritic work piece with a grain size that qualitatively reproduces macroscopic material behavior. Finally, the material point method is introduced as a way of modeling a machining process at the mesoscale in a mesh-free fashion, which is highly advantageous because it intrinsically treats the large deformations during chip formation correctly without the need for repeated remeshing. We discuss which aspects of the grinding process or the work piece quality may be optimized using the adopted approaches, and we show that although our simulations span almost four orders of magnitude in length, the obtained material removal rates agree well. Thus, the presented mesh-free multiscale approach opens new avenues for simulation-aided optimization of grinding processes.

中文翻译:

用于磨削黑色金属表面以优化工艺的多尺度模拟方法

摘要 研磨过程的基本优化通常涉及昂贵的设备和覆盖大参数空间的实验矩阵。为了帮助这个通常很麻烦的过程,我们在这里介绍了三种本质上相关的模拟方法,甚至使用相同的软件,但在不同的细节层次上考虑磨削过程,从而跨越几个长度尺度。使用分子动力学 (MD) 模型,我们对纳米晶碳钢工件进行硬质氧化铝​​磨料磨削,并研究材料去除和表面形貌。第二个更大的 MD 模型允许我们额外研究多晶铁素体工件的微观结构和应力响应,其晶粒尺寸定性地再现宏观材料行为。最后,引入材料点法作为一种以无网格方式在中尺度上模拟加工过程的方法,这是非常有利的,因为它本质上可以正确处理切屑形成过程中的大变形,而无需重复重新划分网格。我们讨论了磨削过程或工件质量的哪些方面可以使用所采用的方法进行优化,并且我们表明,尽管我们的模拟跨越了几乎四个数量级的长度,但获得的材料去除率非常吻合。因此,所提出的无网格多尺度方法为磨削过程的模拟辅助优化开辟了新的途径。这是非常有利的,因为它本质上可以正确处理切屑形成过程中的大变形,而无需重复重新划分网格。我们讨论了磨削过程或工件质量的哪些方面可以使用所采用的方法进行优化,并且我们表明,尽管我们的模拟跨越了几乎四个数量级的长度,但获得的材料去除率非常吻合。因此,所提出的无网格多尺度方法为磨削过程的模拟辅助优化开辟了新的途径。这是非常有利的,因为它本质上可以正确处理切屑形成过程中的大变形,而无需重复重新划分网格。我们讨论了磨削过程或工件质量的哪些方面可以使用所采用的方法进行优化,并且我们表明,尽管我们的模拟跨越了几乎四个数量级的长度,但获得的材料去除率非常吻合。因此,所提出的无网格多尺度方法为磨削过程的模拟辅助优化开辟了新的途径。
更新日期:2021-03-01
down
wechat
bug