当前位置: X-MOL 学术Alex. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multistep short-term wind speed prediction using nonlinear auto-regressive neural network with exogenous variable selection
Alexandria Engineering Journal ( IF 6.2 ) Pub Date : 2020-11-05 , DOI: 10.1016/j.aej.2020.10.045
Fuad Noman , Gamal Alkawsi , Ammar Ahmed Alkahtani , Ali Q. Al-Shetwi , Sieh Kiong Tiong , Nasser Alalwan , Janaka Ekanayake , Ahmed Ibrahim Alzahrani

Precise wind speed prediction is a key factor in many energy applications, especially when wind energy is integrated with power grids. However, because of the intermittent and nonstationary nature of wind speed, modeling and predicting it is a challenge. In addition, using uncorrelated multivariate variables as exogenous input variables often adversely impacts the performance of prediction models. In this paper, we present a multistep short-term wind speed prediction using multivariate exogenous input variables. We implement different variable selection methods to select the best set of variables that significantly improve the performance of prediction models. We evaluate the performance of eight transfer learning methods, four shallow neural networks (NNs), and the persistence method on predicting the future values of wind speed using ultrashort-term, short-term, and multistep time horizons. We performed the evaluation over two-year high-sampled wind speed data averaged at 10-minute intervals. Results show that Nonlinear Auto-Regressive Exogenous (NARX) model outperformed all other methods, achieving an average mean absolute error (MAE) and root mean square error (RMSE) of 0.2205 and 0.3405 for multistep predictions, respectively. Despite the lower performance of the transfer learning methods (i.e., 0.43 and 0.58 for MAE and RMSE, respectively), it is believed that results could be further improved with a better enhancement of the feature selection and model parameters.



中文翻译:

基于外生变量选择的非线性自回归神经网络的多步短期风速预测

精确的风速预测是许多能源应用中的关键因素,尤其是当风能与电网集成在一起时。但是,由于风速具有间歇性和非平稳性,因此对其进行建模和预测是一个挑战。此外,将不相关的多元变量用作外生输入变量通常会对预测模型的性能产生不利影响。在本文中,我们提出了使用多变量外生输入变量进行的多步短期风速预测。我们实现了不同的变量选择方法,以选择可显着改善预测模型性能的最佳变量集。我们评估了八种转移学习方法,四种浅层神经网络(NNs)的性能,以及使用超短期,短期和多步时间范围预测风速未来值的持久性方法。我们对以10分钟为间隔平均的两年高采样风速数据进行了评估。结果表明,非线性自回归外生(NARX)模型的性能优于所有其他方法,多步预测的平均平均绝对误差(MAE)和均方根误差(RMSE)分别为0.2205和0.3405。尽管转移学习方法的性能较低(即对于MAE和RMSE分别为0.43和0.58),但可以相信,通过更好地增强特征选择和模型参数,可以进一步改善结果。我们对以10分钟为间隔平均的两年高采样风速数据进行了评估。结果表明,非线性自回归外生(NARX)模型的性能优于所有其他方法,多步预测的平均平均绝对误差(MAE)和均方根误差(RMSE)分别为0.2205和0.3405。尽管转移学习方法的性能较低(即对于MAE和RMSE分别为0.43和0.58),但可以相信,通过更好地增强特征选择和模型参数,可以进一步改善结果。我们对以10分钟为间隔平均的两年高采样风速数据进行了评估。结果表明,非线性自回归外生(NARX)模型的性能优于所有其他方法,多步预测的平均平均绝对误差(MAE)和均方根误差(RMSE)分别为0.2205和0.3405。尽管转移学习方法的性能较低(即对于MAE和RMSE分别为0.43和0.58),但可以相信,通过更好地增强特征选择和模型参数,可以进一步改善结果。

更新日期:2020-11-06
down
wechat
bug