当前位置: X-MOL 学术Exp. Brain Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The instantaneous training demand drives vestibulo-ocular reflex adaptation
Experimental Brain Research ( IF 2 ) Pub Date : 2020-10-18 , DOI: 10.1007/s00221-020-05953-1
William V C Figtree 1 , Michael C Schubert 2, 3 , Carlo N Rinaudo 1, 4 , Americo A Migliaccio 1, 4, 5, 6
Affiliation  

The vestibulo-ocular reflex (VOR) maintains stable vision during rapid head rotations by rotating the eyes in the opposite direction to the head. The latency between onset of the head rotation and onset of the eye rotation is 5–8 ms in healthy humans. However, VOR latency can be 3–4 times larger in patients treated with intra-tympanic gentamicin. A prior study showed that latency can be trained with head rotations at 0.2 Hz. We sought to determine how the VOR is affected when a delay between vestibular and visual stimuli is added during adaptation training with high-frequency head rotations (impulses), where the VOR is the main vision-stabilizing system. Using a variant of the incremental VOR adaptation technique, the delay between head rotation onset and movement onset of a visual target was gradually increased. With this training, the instantaneous VOR gain demand (= target/head velocity) varied from less than unity to greater than unity during each head impulse, albeit in a consistent and repeatable way. We measured the active and passive VOR gain and latency before and after VOR adaptation training in healthy normal subjects. There was no significant change in VOR latency across subjects; however, there was a significant decrease in VOR gain of − 6.0 ± 4.5%. These data suggest that during high-frequency head rotations delay/latency is interpreted as a changing instantaneous VOR gain demand. Although the gain demand in this study had a complex trajectory, adaptation was evident with the VOR seeming to use an average of the instantaneous gain demand.



中文翻译:

瞬时训练需求驱动前庭眼反射适应

前庭眼反射(VOR)通过在与头部相反的方向上旋转眼睛来在头部快速旋转期间保持稳定的视力。在健康人中,头部旋转发作和眼睛旋转发作之间的潜伏期为5-8 ms。然而,接受鼓室内庆大霉素治疗的患者的VOR潜伏期可能会长3-4倍。先前的研究表明,可以通过以0.2 Hz旋转头部来训练潜伏期。我们试图确定在高频头部旋转(脉冲)适应训练期间添加前庭和视觉刺激之间的延迟时,VOR是如何受到影响的,其中VOR是主要的视觉稳定系统。使用增量VOR适应技术的变体,视觉目标的头部旋转开始和运动开始之间的延迟逐渐增加。通过这次培训,在每次头部冲动期间,瞬时VOR增益需求(=目标/头部速度)在小于1到大于1的范围内变化,尽管以一致且可重复的方式进行。我们测量了健康正常受试者在VOR适应训练前后的主动和被动VOR增益和潜伏期。受试者之间的VOR潜伏期没有显着变化;但是,VOR增益显着降低了-6.0±4.5%。这些数据表明,在高频头旋转期间,延迟/延迟被解释为瞬态VOR增益需求的变化。尽管本研究中的增益需求具有复杂的轨迹,但显然VOR使用的是瞬时增益需求的平均值,因此适应性很明显。尽管以一致且可重复的方式。我们测量了健康正常受试者在VOR适应训练前后的主动和被动VOR增益和潜伏期。受试者之间的VOR潜伏期没有显着变化;但是,VOR增益显着降低了-6.0±4.5%。这些数据表明,在高频头旋转期间,延迟/延迟被解释为瞬态VOR增益需求的变化。尽管本研究中的增益需求具有复杂的轨迹,但显然VOR使用的是瞬时增益需求的平均值,因此适应性很明显。尽管以一致且可重复的方式。我们测量了健康正常受试者在VOR适应训练前后的主动和被动VOR增益和潜伏期。受试者之间的VOR潜伏期没有显着变化;但是,VOR增益显着降低了-6.0±4.5%。这些数据表明,在高频头旋转期间,延迟/延迟被解释为瞬态VOR增益需求的变化。尽管本研究中的增益需求具有复杂的轨迹,但显然VOR使用的是瞬时增益需求的平均值,因此适应性很明显。VOR增益显着降低-6.0±4.5%。这些数据表明,在高频头旋转期间,延迟/延迟被解释为瞬态VOR增益需求的变化。尽管本研究中的增益需求具有复杂的轨迹,但显然VOR使用的是瞬时增益需求的平均值,因此适应性很明显。VOR增益显着降低-6.0±4.5%。这些数据表明,在高频头旋转期间,延迟/延迟被解释为瞬态VOR增益需求的变化。尽管本研究中的增益需求具有复杂的轨迹,但显然VOR使用的是瞬时增益需求的平均值,因此适应性很明显。

更新日期:2020-11-06
down
wechat
bug