当前位置: X-MOL 学术J. Phys. Chem. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coherent Electron Transport across a 3 nm Bioelectronic Junction Made of Multi-Heme Proteins
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2020-11-03 , DOI: 10.1021/acs.jpclett.0c02686
Zdenek Futera 1, 2 , Ichiro Ide 3 , Ben Kayser 4 , Kavita Garg 4 , Xiuyun Jiang 2 , Jessica H. van Wonderen 5 , Julea N. Butt 5 , Hisao Ishii 3 , Israel Pecht 6 , Mordechai Sheves 7 , David Cahen 4 , Jochen Blumberger 2
Affiliation  

Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+Σ current–voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices.

中文翻译:

跨多血红素蛋白制成的3 nm生物电子结的相干电子传输

多血红素细胞色素(MHC)是细菌有机体用来在细胞内,细胞间和细胞外传递电子的迷人蛋白。当放置在固态电子结中时,MHC支持数纳米以上的温度无关电流,与其他类似大小的氧化还原蛋白相比,电流高3个数量级。为了从分子水平上洞悉其惊人的高电导率,我们在代表性的Gold-MHC-Gold结上结合了实验性光发射光谱与DFT +Σ电流-电压计算。我们发现,通过干燥的,3 nm长的蛋白质的传导是通过非共振相干隧道发生的,该隧道由大量在血红素和蛋白质残基上强烈离域的蛋白质价带轨道介导。这张图片与在水性条件下以电化学或光化学方式诱导的电子跳跃机理有很大不同。我们的结果表明,例如,通过施加栅极电压,甚至可以在谐振中进一步提高固态结中的电流输出,从而允许下一代仿生纳米电子器件发生量子跃迁。
更新日期:2020-11-19
down
wechat
bug