当前位置: X-MOL 学术Mater. Sci. Semicond. Proc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting the band structure, transport properties, electronic fitness function and effective mass of PdTiSn indirect band-gap half-Heusler semiconductor
Materials Science in Semiconductor Processing ( IF 4.2 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.mssp.2020.105548
Timothy M. Ashani , Rabiu S. Sunmonu , Johnson O. Akinlami , Gboyega A. Adebayo

Abstract This work presents the report of density functional theory investigations into PdTiSn Half Heusler alloy using Boltzmann theory of BoltzTraP codes as incorporated in quantum ESPRESSO package with plane-wave pseudo-potentials to investigate the electronic band structure and transport properties of this compound. Also, transport effective mass and electronic fitness function for this system were computed from results of Boltzmann transport theory based calculations via transM code. A probe into the obtained band structure, classified PdTiSn as an indirect semiconductor with estimated band gap of 0.47 eV. This material possessed notable high conductivity values at carrier concentration (CC) of 1022 cm−3 in temperature range of 100–800 K. It was observed that within the investigated temperature range, for n- and p-types, there were sharp decreases in Seebeck coefficients, which later increased for the n-type. Power factors per relaxation time for both the n- and p-types increased as temperature increases with peak values recorded at 800 K beyond 1021 cm−3 CC and is higher for the p-type. The calculated electronic fitness function has a maximum value of 7 × 1020 W5/3m-s−1/3K−2, where the electron's and hole's concentrations are zero. This material also exhibited light effective mass, this responsible for its higher conductivity. The thermoelectric properties, effective mass and electron fitness function for pure PdTiSn half Heusler alloy are extensively reported here. The results of this study predict PdTiSn as a p-type semiconductor, which will provide better thermoelectric performance.

中文翻译:

预测 PdTiSn 间接带隙半赫斯勒半导体的能带结构、输运特性、电子适应度函数和有效质量

摘要 本工作介绍了密度泛函理论研究 PdTiSn Half Heusler 合金的报告,该报告使用 BoltzTraP 码的 Boltzmann 理论,结合在具有平面波赝势的量子 ESPRESSO 封装中,以研究该化合物的电子能带结构和传输特性。此外,该系统的传输有效质量和电子适应度函数是通过 transM 代码根据基于玻尔兹曼传输理论的计算结果计算的。对获得的能带结构的探索,将 PdTiSn 归类为间接半导体,估计带隙为 0.47 eV。这种材料在 100-800 K 的温度范围内在载流子浓度 (CC) 为 1022 cm-3 时具有显着的高电导率值。据观察,在研究的温度范围内,对于 n 型和 p 型,塞贝克系数急剧下降,后来 n 型增加。n 型和 p 型的每个弛豫时间的功率因数随着温度升高而增加,峰值记录在 800 K 超过 1021 cm-3 CC,并且 p 型更高。计算出的电子适应度函数的最大值为 7 × 1020 W5/3m-s-1/3K-2,其中电子和空穴的浓度为零。这种材料还表现出轻的有效质量,这是其较高导电性的原因。此处广泛报道了纯 PdTiSn 半赫斯勒合金的热电性能、有效质量和电子适应度函数。该研究的结果预测 PdTiSn 作为 p 型半导体,将提供更好的热电性能。n 型和 p 型的每个弛豫时间的功率因数随着温度升高而增加,峰值记录在 800 K 超过 1021 cm-3 CC,并且 p 型更高。计算出的电子适应度函数的最大值为 7 × 1020 W5/3m-s-1/3K-2,其中电子和空穴的浓度为零。这种材料还表现出轻的有效质量,这是其较高导电性的原因。此处广泛报道了纯 PdTiSn 半赫斯勒合金的热电性能、有效质量和电子适应度函数。该研究的结果预测 PdTiSn 作为 p 型半导体,将提供更好的热电性能。n 型和 p 型的每个弛豫时间的功率因数随着温度升高而增加,峰值记录在 800 K 超过 1021 cm-3 CC,并且 p 型更高。计算出的电子适应度函数的最大值为 7 × 1020 W5/3m-s-1/3K-2,其中电子和空穴的浓度为零。这种材料还表现出轻的有效质量,这是其较高导电性的原因。此处广泛报道了纯 PdTiSn 半赫斯勒合金的热电性能、有效质量和电子适应度函数。该研究的结果预测 PdTiSn 作为 p 型半导体,将提供更好的热电性能。
更新日期:2021-03-01
down
wechat
bug