当前位置: X-MOL 学术Biogeochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil greenhouse gas fluxes following conventional selective and reduced-impact logging in a Congo Basin rainforest
Biogeochemistry ( IF 3.9 ) Pub Date : 2020-11-03 , DOI: 10.1007/s10533-020-00718-y
Rodine Tchiofo Lontsi , Marife D. Corre , Najeeb A. Iddris , Edzo Veldkamp

Selective logging is among the main causes of tropical forest degradation, but little is known about its effects on greenhouse gas (GHG) fluxes from highly weathered Ferralsol soils in Africa. We measured soil CO2, N2O, and CH4 fluxes, and their soil controlling factors at two forests that had undergone conventional selective logging and reduced-impact logging in Cameroon. Each logging system had four replicate plots, each included the disturbed strata (road, logging deck, skidding trail, and felling gap) and an undisturbed reference area. Measurements were conducted monthly from September 2016 to October 2017. Annual GHG fluxes ranged from 4.9 to 18.6 Mg CO2–C, from 1.5 to 79 kg N2O–N, and from − 4.3 to 71.1 kg CH4–C ha−1 year−1. Compared to undisturbed areas, soil CO2 emissions were reduced and soil CH4 emissions increased in skidding trails, logging decks and roads (P < 0.01) whereas soil N2O emissions increased in skidding trails (P = 0.03–0.05). The combined disturbed strata had 28% decrease in soil CO2 emissions, 83% increase in soil N2O emissions, and seven times higher soil CH4 emissions compared to undisturbed area (P ≤ 0.01). However, the disturbed strata represented only 4–5% of the area impacted in both logging systems, which reduced considerably the changes in soil GHG fluxes at the landscape level. Across all strata, soil GHG fluxes were regulated by soil bulk density and water-filled pore space, indicating the influence of soil aeration and gas diffusion, and by soil organic carbon and nitrogen, suggesting the control of substrate availability on microbial processes of these GHG.

中文翻译:

刚果盆地雨林中常规选择性和减少影响的伐木后土壤温室气体通量

选择性伐木是热带森林退化的主要原因之一,但对其对非洲高度风化的铁溶胶土壤的温室气体 (GHG) 通量的影响知之甚少。我们测量了喀麦隆两片森林的土壤 CO2、N2O 和 CH4 通量及其土壤控制因素。每个测井系统有四个重复样地,每个样地都包括受干扰的地层(道路、测井台、滑道和采伐间隙)和一个未受干扰的参考区域。测量从 2016 年 9 月到 2017 年 10 月每月进行。年度温室气体通量范围为 4.9 至 18.6 Mg CO2–C、1.5 至 79 kg N2O–N 和 − 4.3 至 71.1 kg CH4–C ha−1 year−1。与未受干扰的地区相比,滑道的土壤 CO2 排放量减少,土壤 CH4 排放量增加,伐木甲板和道路 (P < 0.01) 而土壤 N2O 排放在滑道中增加 (P = 0.03–0.05)。与未受干扰区域相比,受扰动的组合地层土壤 CO2 排放量减少 28%,土壤 N2O 排放量增加 83%,土壤 CH4 排放量增加 7 倍(P ≤ 0.01)。然而,受干扰的地层仅占两种测井系统受影响面积的 4-5%,这大大减少了景观水平上土壤 GHG 通量的变化。在所有地层中,土壤 GHG 通量受土壤容重和充满水的孔隙空间调节,表明土壤曝气和气体扩散的影响,以及土壤有机碳和氮,表明底物有效性对这些 GHG 微生物过程的控制. 01) 而土壤 N2O 排放在滑行道中增加 (P = 0.03–0.05)。与未受干扰区域相比,受扰动的组合地层土壤 CO2 排放量减少 28%,土壤 N2O 排放量增加 83%,土壤 CH4 排放量增加 7 倍(P ≤ 0.01)。然而,受干扰的地层仅占两种测井系统受影响面积的 4-5%,这大大减少了景观水平上土壤 GHG 通量的变化。在所有地层中,土壤 GHG 通量受土壤容重和充满水的孔隙空间调节,表明土壤通气和气体扩散的影响,以及土壤有机碳和氮,表明底物有效性对这些 GHG 微生物过程的控制. 01) 而土壤 N2O 排放在滑行道中增加 (P = 0.03–0.05)。与未受干扰区域相比,受扰动的组合地层土壤 CO2 排放量减少 28%,土壤 N2O 排放量增加 83%,土壤 CH4 排放量增加 7 倍(P ≤ 0.01)。然而,受干扰的地层仅占两种测井系统受影响面积的 4-5%,这大大减少了景观水平上土壤 GHG 通量的变化。在所有地层中,土壤 GHG 通量受土壤容重和充满水的孔隙空间调节,表明土壤曝气和气体扩散的影响,以及土壤有机碳和氮,表明底物有效性对这些 GHG 微生物过程的控制. 与未受干扰区域相比,土壤 CH4 排放量高出 7 倍(P ≤ 0.01)。然而,受干扰的地层仅占两种测井系统受影响面积的 4-5%,这大大减少了景观水平上土壤 GHG 通量的变化。在所有地层中,土壤 GHG 通量受土壤容重和充满水的孔隙空间调节,表明土壤曝气和气体扩散的影响,以及土壤有机碳和氮,表明底物有效性对这些 GHG 微生物过程的控制. 与未受干扰区域相比,土壤 CH4 排放量高出 7 倍(P ≤ 0.01)。然而,受干扰的地层仅占两种测井系统受影响面积的 4-5%,这大大减少了景观水平上土壤 GHG 通量的变化。在所有地层中,土壤 GHG 通量受土壤容重和充满水的孔隙空间调节,表明土壤曝气和气体扩散的影响,以及土壤有机碳和氮,表明底物有效性对这些 GHG 微生物过程的控制.
更新日期:2020-11-03
down
wechat
bug